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Introduction



BABD vs ABD systems

Boundary Value Problems for Ordinary Differential Equations (BVODEs)

y ′ = A(x)y(x) + q(x), Bay(a) + Bby(b) = 0, y , q ∈ Rn, x ∈ [a, b].

yield Bordered Almost Block Diagonal (BABD) system

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb





x0

x1

...

xN−1

xN

 =



b0

b1

...

bN−1

bN


where Si ,Ti ,Ba,Bb are square n × n blocks. When BCs are separable, i.e.

Ba =

[
B̄a

O

]
, Bb =

[
O
B̄b

]
, bN =

[
ba

bb

]
we obtain an Almost Block Diagonal (ABD) system

B̄a

S0 T0

. . .
. . .

SN−1 TN−1

B̄b





x0

x1

...

xN−1

xN

 =



ba

b0

...

bN−1

bb


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Motivations and other applications

Numerical methods for nonlinear BVODEs

y ′ = f (x , y(x)), y , f ∈ Rn, x ∈ [a, b]

g(y(a), y(b)) = 0.

require the solution of a sequence of BABD/ABD linear systems.

• Model Predictive Control

• Markov chains modeling

• Quantum Monte Carlo simulations

• Parameter estimation with non-linear DAE models

3
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Structured Orthogonal Factorization
- SOF



Local Factorization [Wright 1992]



S0 T0 b0

. . .
...

Sk1−1 Tk1−1 bk1−1

. . .
...

SkP−1
TkP−1

bkP−1

. . .
...

SN−1 TN−1 bN−1

Ba Bb bN


• Divide the BABD system into P slices with roughly the same number of block

rows and assign each slice to one processor.

• Find Q0 orthogonal such that[
Tkp

Skp+1

]
= Q0

[
Ukp

O

]
.

• Apply QT
0 to update the system.

• Find Q1 orthogonal such that[
W kp+1

Skp+2

]
= Q1

[
Ukp+1

O

]
.

• Apply QT
1 to update the system.

• Repet ultil all rows have been processed.
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Local Factorization [Wright 1992]

[
QT

0

I(k−2)n

]



Skp Tkp bkp

Skp+1 Tkp+1 bkp+1

Skp+2 Tkp+2 bkp+2

. . .
...

Skp+1−1 Tkp+1−1 bkp+1−1
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Local Factorization [Wright 1992]
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Recursive procedure [Wright 1992]

By concatenating all local factorizations, we obtain the equivalent system

QT [A|b] =



V0 U0 W0 f0

...
. . .

...

S ′0 T ′0 b′0

. . .
...

VkP−1
UkP−1

WkP−1
fkP−1

...
. . .

...

S ′P−1 T ′P−1 b′
N′−1

Ba Bb bN


︸ ︷︷ ︸

[Â,b̂]

The solution of Ax = b is decoupled as

1. obtain selected unknowns by solving the BABD system Â of reduced size

(recursion)

2. retrieve the missing unknowns by back-substitution

5
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SOF’s workflow

Communication pattern in the case N = 8 (9n unknowns) with P = 4 slices (and

processors) of k = 2 block rows each, showing the dataflow between each block

equation.

e8e7e6e5e4e3e2e1e0

e8e′7e′5e′3e′1

e8e′′7e′′3

e8e′′′7

x8 e′′′3
x0

x8e′′2x4e′′0x0

x8e′6x6e′4x4e′2x2e′0x0

x8x7x6x5x4x3x2x1x0

S
E

Q
U

E
N

T
IA

L

• P ≤ N/2 processors needed

• 2log2P sequential steps

• at each step half of the processors

active at the previous step stays idle

• the amount of parallel work is likely

not enough to fully exploit GPUs’

potential
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PARAllel Structured Orthogonal
Factorization - PARASOF



Odd/Even SOF

Idea

Decouple odd/even unknowns in a parallel cyclic reduction fashion, i.e. i-th block

row is coupled with both i − 1-th and i + 1-th block row.

Suppose N + 1 is even. For even unknowns, apply SOF to

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb



−→ QeAx = Qeb −→
{
Aexe = be

Uexo = bo − Aoxe

For odd unknowns, apply SOF to

S1 T1

S2 T2

. . .
. . .

S0 T0

Ba Bb



−→ QoAx = Qob −→
{
Aoxo = bo

Uoxe = be − Aexe

These two orthogonal transformation can be performed in parallel and recursively.
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Odd/Even SOF’s workflow

Communication pattern in the case N = 7 (8n unknowns) with P = 8 slices (and

processors) of k = 2 block rows each, showing the dataflow between each block

equation.

e7e6e5e4e3e2e1e0

eo7ee7eo6ee5eo4ee3eo2ee1

eee7eeo7eoe7eee7eoo6eeo5eoe4eee3

x7x6x5x4x3x2x1x0

S
E

Q
U

E
N

T
IA

L

• P = N processors needed

• roughly log2 N algorithmic steps

• no processor stays idle

• all steps contain the same amount

of work

Observation

In a real application we often have N � P, thus the available parallel work is

somehow serialized in chunks even on massively parallel architectures.
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PARASOF

1. Apply one step of SOF’s forward reduction phase of obtain a reduced P × P

block system.

2. Solve the reduced intermediate system with the odd/even SOF algorithm

3. Retrieve the missing unknowns using one step of backward substitution

e9e8e7e6e5e4e3e2e1e0

e9e′8e′5e′2

eo9ee9e′o8e′e5

x9e′8e′7x6e′5e′4x3e′2e′1x0

x9x8

x7

x6x5

x4

x3x2

x1

x0

S
E

Q
U

E
N

T
IA

L

• arbitrary number of processors P

• log2P + 2 sequential steps

• no idle processors

• minimal amount of serialized work
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Numerical Experiments



Theoretical speed-ups

• Local QR is computed with Householder reflectors

• P = number of processors

• Pc = number of coarse grained processors (Streaming Multiprocessors)

• Pf = number of fine grained processors (warps)

Setting: P = 16, Pc = 10, Pf = 32.

2 4 6 8 10 12 14 16
n

1x

5x

10x

15x

20x

25x

30x

Sp
ee

d-
up

(a) Theoretical speed-up (PARASOF vs SOF),

N = 211.
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(b) Theoretical speed-up (PARASOF vs SOF),

n = 16.

Figure 1: Theoretical speedup in function of the size n (left) and the number N (right) of internal

blocks.
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Theoretical speed-ups

• Local QR is computed with Householder reflectors

• P = number of processors

• Pc = number of coarse grained processors (Streaming Multiprocessors)

• Pf = number of fine grained processors (warps)

Algorithm # steps Factorization Memory

SOF 2 log2(P) 46
3
n3
(

N
P

+ L− 1
)

4n2 (N + P L) + n(N + P)

PARASOF log2(Pc ) 42
3

n3

Pf
Lr + 46

3
n3

Pf

(
N
Pc

)
2n2Pc + 4n2 (N + Pc ) + n(N + Pc )

Table 1: Complexity comparison of algorithms in terms of algorithmic steps and operation count.
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Experiments’ setting

• C/CUDA language

• randomly generated linear systems (dense blocks, worst case)

• umfpack (Davis 2004), a well optimized CPU multifrontal LU factorization

We test its performance by running the algorithm on two different workstations:

1. dellcuda1, with two 1.80GHz Intel(R) Xeon(R) CPU E5-2630L v3 CPU and a

Nvidia TITAN Xp graphic card;

2. gpu01, with a 3.50GHz Intel(R) Core(TM) i7-2700K CPU and a Nvidia GeForce

GTX1060 graphic card.

11



Experiments’ setting

• C/CUDA language

• randomly generated linear systems (dense blocks, worst case)

• umfpack (Davis 2004), a well optimized CPU multifrontal LU factorization

We test its performance by running the algorithm on two different workstations:

1. dellcuda1, with two 1.80GHz Intel(R) Xeon(R) CPU E5-2630L v3 CPU and a

Nvidia TITAN Xp graphic card;

2. gpu01, with a 3.50GHz Intel(R) Core(TM) i7-2700K CPU and a Nvidia GeForce

GTX1060 graphic card.

11



Speed-up on gpu01

• Nr = size of reduced system that is solved with odd/even SOF.
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(a) Speed-up , N = 211 and Nr = 63.

7 8 9 10 11 12 13 14 15
log2(N)

1x

5x

10x

15x

20x

25x

30x

Sp
ee

d-
up

(b) Speed-up, n = 16 and Nr = 63.

Figure 2: PARASOF speed-up over spsolve on gpu01.
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Speed-up on dellcuda1
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(c) Speed-up , N = 211 and Nr = 127.
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(d) Speed-up, n = 16 and Nr = 127.

Figure 3: PARASOF speed-up over spsolve on dellcuda1.
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Conclusions and Future work



Fast Givens Transformations on GPUs

Batched routines computes multiple and independent linear algebra operations on

small-sized matrices and/or vectors in a single routine call.

• Batched Givens QR can improve speed-ups exploiting sparsity of block rows

whenever possible
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Conclusions

• New stable parallel algorithm for solving of BABD systems has been proposed

• Same technique can be extended to the parallel solution of ABD systems with

minor changes

• Speed-up up to 60x can be achieved in comparison to optimized CPU methods

• Timings are architecture dependent

• In particular, further optimization can be achieved with Givens rotations

15



Thank you for your attention!
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Instability phenomena Wright 1992

Consider the linear BVODE

y ′ =

(
−1/6 1

1 −1/6

)
y +

(
0

1

)
, ya + yb = 0, x ∈ [0, 60].

This problem is well conditioned in the Hadamard sense.

Standard discretization leads the following BABD matrix

A =



I I
−B I

−B I
. . .

. . .

−B I


Using Gaussian elimination with partial pivoting, no interchanges are required, and

A = LU =



I
−B I

−B I
. . .

. . .

−B L̄





I I
I B

. . .
...

I BN−1

Ū


The elements in the last column of U grow exponentially with N.
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Ū


The elements in the last column of U grow exponentially with N.

17


	Introduction
	Structured Orthogonal Factorization - SOF
	PARAllel Structured Orthogonal Factorization - PARASOF
	Numerical Experiments
	Conclusions and Future work

