
Data Structures to Implement the Sparse Vector in
Crout ILU Preconditioner

Sparse Days 2019

11th July 2019

Raju Ram

PhD Student
CC-HPC
Fraunhofer ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern
Germany

© Fraunhofer ITWM

11th July 2019 1

Data Structures to Implement the Sparse Vector in
Crout ILU Preconditioner

Iterative Solvers for Sparse Linear Systems
GaspiLS Linear Solver Library

Crout Incomplete LU (ILU) factorization of A
Serial Crout ILU Method
Multilevel Crout ILU Method
Parallelization of Crout ILU Method

Sparse Vector Update in Serial Crout ILU Factorization
Data Structures to Implement Sparse Vector
Profiler Readings

© Fraunhofer ITWM

11th July 2019 2

Sparse Iterative Linear Solvers

Linear Solvers on Sparse Matrices are the base
of Simulations in Science, Engineering.
Solve for x in Ax = b.
Preconditioning improves the convergence of
linear solver since it reduces the condition
number of the matrix.
Typical kernel in Parallel Iterative Solvers:

Preconditioning step (line 4)
Sparse matrix vector multiplication (line 12)
Global dot product (line 8, 12)
Axpy operation (line 10, 14, 15)

Preconditioning Step is most challenging kernel
for scalability in parallel iterative solvers.

Algorithm 1 Preconditioned Conjugate Gradient (PCG) Algorithm

1: procedure PCG(A, b, x (0), tol , kmax ,M)
2: r (0) = f − Au(0), k = 1 . Initialization
3: while (k < kmax and ‖r (k−1)‖ > tol) do
4: z (k−1) = M−1r (k−1) . Preconditioning
5: if k = 1 then
6: p(1) = z (0)

7: else
8: βk = (r (k−1))T z(k−1)

(r (k−2))T z(k−2)

9:
10: p(k) = z (k−1) + βkp(k−1) . Search direction
11: end if
12: αk = (r (k−1))T z(k−1)

(p(k))T Ap(k)

13:
14: x (k) = x (k−1) + αkp(k) . Iterate update
15: r (k) = r (k−1) − αkAp(k) . Residual update
16: k = k + 1
17: end while
18: return x (k−1) . The converged solution
19: end procedure

© Fraunhofer ITWM

11th July 2019 3

Global Address Space Programming Interface (GASPI)

Asynchronous, single sided communication
based standardized API.

Developed keeping scalability in mind.

Applications are developed in machine learning,
big data, seismic imaging based on GASPI.

We are building a scalable linear solver library
based on GASPI to solve complex simulations in
science and engineering.

Abbildung: Ideal scalability until 1024 nodes [4]

© Fraunhofer ITWM

11th July 2019 4

GaspiLS linear solver library

Gaspi based C++ Linear Solver Library
Iterative solvers: (P)CG, BiPCGStab, GMRES
Preconditioners: Jacobi, ILU, ILUM
MPI interoperable
Industry proven in CFD and FEM simulations
OpenSource GPLv3 license library [1]

© Fraunhofer ITWM

11th July 2019 5

My research motivation

Solving for z in Mz = r with Incomplete LU Preconditioner (ILU) consists of two steps:

LDUz = r , solve for y in Ly = r using forward substitution where y = DUz .
DUz = y , solve for z in Uz = D−1y using backward substitution.

LDU Factorization and forward and backward substitution algorithm are serial in nature, thus
difficult to parallelize.
We want to decompose the problem into several tasks and run them in parallel as much as possible.

© Fraunhofer ITWM

11th July 2019 6

My research motivation

Solving for z in Mz = r with Incomplete LU Preconditioner (ILU) consists of two steps:

LDUz = r , solve for y in Ly = r using forward substitution where y = DUz .
DUz = y , solve for z in Uz = D−1y using backward substitution.

LDU Factorization and forward and backward substitution algorithm are serial in nature, thus
difficult to parallelize.
We want to decompose the problem into several tasks and run them in parallel as much as possible.

© Fraunhofer ITWM

11th July 2019 6

My research motivation

Solving for z in Mz = r with Incomplete LU Preconditioner (ILU) consists of two steps:

LDUz = r , solve for y in Ly = r using forward substitution where y = DUz .
DUz = y , solve for z in Uz = D−1y using backward substitution.

LDU Factorization and forward and backward substitution algorithm are serial in nature, thus
difficult to parallelize.
We want to decompose the problem into several tasks and run them in parallel as much as possible.

© Fraunhofer ITWM

11th July 2019 6

Data Structures to Implement the Sparse Vector in
Crout ILU Preconditioner

Iterative Solvers for Sparse Linear Systems

Crout Incomplete LU (ILU) factorization of A
Serial Crout ILU Method
Multilevel Crout ILU Method
Parallelization of Crout ILU Method

Sparse Vector Update in Serial Crout ILU Factorization

© Fraunhofer ITWM

11th July 2019 7

Incomplete LU (ILU) Preconditioner

The iterative methods frequently incorporate incomplete LU (ILU) preconditioner because of its
robustness, accuracy, and usability as a black-box preconditioner.
The ILU Preconditioner is serial in nature.
To introduce parallelism, Crout version of ILU is used as a preconditioner.
Crout ILU may control the growth of error in the preconditioning operation by setting a bound on
the inverse of the triangular (L and U) factors.

© Fraunhofer ITWM

11th July 2019 8

Incomplete LU (ILU) Preconditioner

The iterative methods frequently incorporate incomplete LU (ILU) preconditioner because of its
robustness, accuracy, and usability as a black-box preconditioner.
The ILU Preconditioner is serial in nature.
To introduce parallelism, Crout version of ILU is used as a preconditioner.
Crout ILU may control the growth of error in the preconditioning operation by setting a bound on
the inverse of the triangular (L and U) factors.

© Fraunhofer ITWM

11th July 2019 8

Incomplete LU (ILU) Preconditioner

The iterative methods frequently incorporate incomplete LU (ILU) preconditioner because of its
robustness, accuracy, and usability as a black-box preconditioner.
The ILU Preconditioner is serial in nature.
To introduce parallelism, Crout version of ILU is used as a preconditioner.
Crout ILU may control the growth of error in the preconditioning operation by setting a bound on
the inverse of the triangular (L and U) factors.

© Fraunhofer ITWM

11th July 2019 8

Incomplete LU (ILU) Preconditioner

The iterative methods frequently incorporate incomplete LU (ILU) preconditioner because of its
robustness, accuracy, and usability as a black-box preconditioner.
The ILU Preconditioner is serial in nature.
To introduce parallelism, Crout version of ILU is used as a preconditioner.
Crout ILU may control the growth of error in the preconditioning operation by setting a bound on
the inverse of the triangular (L and U) factors.

© Fraunhofer ITWM

11th July 2019 8

Crout ILU Algorithm

Until step (k − 1), LDU factorization of A(1 : k − 1, 1 : k − 1) is computed.
At kth step, row z(A(k, k : n)) and column w(A(k + 1 : n, k)) is updated.
U is stored in CSR and L is stored in CSC format.

Algorithm 2 Crout version of ILU Algorithm: ILUC

1: for k = 1 : n do
2: z1:k−1 = 0, zk:n = ak,k:n . Initialize row z
3: for (1 ≤ i ≤ k − 1 and lki 6= 0) do
4: zk:n = zk:n − lki ∗ ui ,k:n . Preparation to update uk,:

5: end do
6: w1:k = 0, wk+1:n = ak+1:n,k . Initialize column z
7: for (1 ≤ i ≤ k − 1 and uik 6= 0) do
8: wk+1:n = wk+1:n − uik ∗ lk+1:n,i . Preparation to update l:,k
9: end do

10: Apply a dropping rule to row z
11: Apply a dropping rule to column w
12: uk,: = z
13: l:,k = w/ukk , lkk = 1
14: end do

© Fraunhofer ITWM

11th July 2019 9

Dropping entries in L and U

Why dropping? : The complete LU decomposition of sparse matrix A introduce additional fill-ins in L
and U . This leads to computation overhead during solution phase.

Dropping strategies in ILU(τ, p) :
τ : Drop an element whose magnitude is less than a tolerance τ .
p : Only keep p largest elements in magnitude in the k-th column of L and kth row of U .

Drop all other elements.

© Fraunhofer ITWM

11th July 2019 10

Dropping entries in L and U

Why dropping? : The complete LU decomposition of sparse matrix A introduce additional fill-ins in L
and U . This leads to computation overhead during solution phase.

Dropping strategies in ILU(τ, p) :
τ : Drop an element whose magnitude is less than a tolerance τ .
p : Only keep p largest elements in magnitude in the k-th column of L and kth row of U .

Drop all other elements.

© Fraunhofer ITWM

11th July 2019 10

Inverse Based Pivoting in ILU

Applying Crout ILU on A, we obtain A = LDU + R . The matrix R is generated due to dropping.
Preconditioning matrix: L−1AU−1 = D + L−1RU−1.
Error matrix L−1RU−1 grows when ‖L−1‖ and ‖U−1‖ grows.
If ‖L−1‖ ≤ κ perform factorization, else move the pivot akk at the end of matrix.

(Courtesy: figure from [3]) José Ignacio Aliaga, Exploiting task and data parallelism in ILUPACK’s
preconditioned CG solver on NUMA architectures and many-core accelerators
© Fraunhofer ITWM

11th July 2019 11

Schur Complement Matrix Computation

To bound the inverse norm, the matrix is not completely factorized at this stage.
Instead, Partial Crout ILU factorization of A such that B = LBDBUB.

A =
B E
F C

 =
LB 0
LE I


DB 0

0 SC


UB UF

0 I

 + E

Schur complment matrix SC is computed that will be factorized at next level.

SC ≈ C − LEDBUF .

© Fraunhofer ITWM

11th July 2019 12

Schur Complement Matrix Computation

To bound the inverse norm, the matrix is not completely factorized at this stage.
Instead, Partial Crout ILU factorization of A such that B = LBDBUB.

A =
B E
F C

 =
LB 0
LE I


DB 0

0 SC


UB UF

0 I

 + E

Schur complment matrix SC is computed that will be factorized at next level.

SC ≈ C − LEDBUF .

© Fraunhofer ITWM

11th July 2019 12

Multilevel Crout ILU Method

Algorithm 3 Multilevel Crout Algorithm

1: procedure MultiLevel_Crout_ILU(A)
2: if (coarsest level) then
3: Decompose Crout LDU factorization.
4: return
5: else
6: Compute Crout LDU formulation of submatrix nB × nB of A
7: Compute the Schur complement matrix SC
8: Call MULTILEVEL_CROUT_ILU (SC).
9: return

10: end if
11: end procedure

© Fraunhofer ITWM

11th July 2019 13

Data Structures to Implement the Sparse Vector in
Crout ILU Preconditioner

Iterative Solvers for Sparse Linear Systems

Crout Incomplete LU (ILU) factorization of A
Serial Crout ILU Method
Multilevel Crout ILU Method
Parallelization of Crout ILU Method

Sparse Vector Update in Serial Crout ILU Factorization

© Fraunhofer ITWM

11th July 2019 14

How to extract Parallelism in Crout LU decomposition

Sparse matrix A can be represented in an undirected graph GA.
Nested Dissection of GA leads to a binary task tree.

(a) The graph GA partitioned using 2 level nested dissection

(b) Task dependency tree corresponding to a)

Abbildung: Extracting task level parallelism from ILU algorithm
© Fraunhofer ITWM

11th July 2019 15

After reordering A→ PT AP =



A11 0 0 0 A15 0 A17
0 A22 0 0 A25 0 A27
0 0 A33 0 0 A36 A37
0 0 0 A44 0 A46 A47

A51 A52 0 0 A55 0 A57
0 0 A63 A64 0 A66 A67

A71 A72 A73 A74 A75 A76 A77



(1)

We can disassemble (1) into following independent matrix structures:

A1 =


A11 A15 A17
A51 A1

55 A1
57

A71 A1
75 A1

77

 , A2 =


A22 A25 A27
A52 A2

55 A2
57

A72 A2
75 A2

77



A3 =


A33 A36 A37
A63 A3

66 A3
67

A73 A3
76 A3

77

 , A4 =


A44 A46 A47
A64 A4

66 A4
67

A74 A4
76 A4

77


(2)

These independent sub-matrices can now be processed in parallel.
Here, we choose A1

55 = A2
55 = 1

2A55, A1
57 = A2

57 = 1
2A57, A3

66 = A4
66 = 1

2A66, A3
67 = A4

67 = 1
2A67,

A1
77 = A2

77 = A3
77 = A4

77 = 1
4A77.

© Fraunhofer ITWM

11th July 2019 16

Parallel Crout ILU factorization at level 1

Abbildung: Parallel Crout ILU factorization [5]

Courtesy: A.F.Martin, Scheduling Strategies for Parallel Sparse Substitution
© Fraunhofer ITWM

11th July 2019 17

Parallel Assembly of Schur Complement Matrices at level 2

© Fraunhofer ITWM

11th July 2019 18

Parallel Crout ILU factorization at level 2

© Fraunhofer ITWM

11th July 2019 19

Assembly of Schur Complement Matrices at level 3

© Fraunhofer ITWM

11th July 2019 20

Crout complete ILU factorization at level 3

© Fraunhofer ITWM

11th July 2019 21

Why Sparse Vector Update matters to us?

Serial Crout ILU factorization takes
place at every node in the task tree.
Therefore its efficient
implementation is crucial for the
parallel factorization.

Sparse vector z and w update is most
time consuming kernel in serial
factorization. Hence its
implementation should be properly
investigated.

Algorithm 4 Crout version of ILU Algorithm: ILUC

1: for k = 1 : n do
2: z1:k−1 = 0, zk:n = ak,k:n . Initialize row z
3: for (1 ≤ i ≤ k − 1 and lki 6= 0) do
4: zk:n = zk:n − lki ∗ ui ,k:n . Preparation to update uk,:

5: end do
6: w1:k = 0, wk+1:n = ak+1:n,k . Initialize column z
7: for (1 ≤ i ≤ k − 1 and uik 6= 0) do
8: wk+1:n = wk+1:n − uik ∗ lk+1:n,i . Preparation to update l:,k
9: end do

10: Apply a dropping rule to row z
11: Apply a dropping rule to column w
12: uk,: = z
13: l:,k = w/ukk , lkk = 1
14: end do

© Fraunhofer ITWM

11th July 2019 22

Handling Sparsity at the Step k

Row vector z is updated using the linear combination of preceding rows of U .

Algorithm 5 Update in sparse vector z
1: for (1 ≤ i ≤ k − 1 and lki 6= 0) do
2: zk:n = zk:n − lki ∗ ui ,k:n

3: end do

We only store the non-zero entries in the sparse vector z .
Features required in sparse Vector z :

Column Index j lookup: Should be O(1) for faster lookups,
Insertion of entry z [j]: Should be O(1),
Erasing entry z [j]: Should be O(1),
Sorting z based on the column index j : Avg case O(nlog(n)).

© Fraunhofer ITWM

11th July 2019 23

Handling Sparsity at the Step k

Row vector z is updated using the linear combination of preceding rows of U .

Algorithm 6 Update in sparse vector z
1: for (1 ≤ i ≤ k − 1 and lki 6= 0) do
2: zk:n = zk:n − lki ∗ ui ,k:n

3: end do

We only store the non-zero entries in the sparse vector z .
Features required in sparse Vector z :

Column Index j lookup: Should be O(1) for faster lookups,
Insertion of entry z [j]: Should be O(1),
Erasing entry z [j]: Should be O(1),
Sorting z based on the column index j : Avg case O(nlog(n)).

© Fraunhofer ITWM

11th July 2019 23

Handling Sparsity at the Step k

Row vector z is updated using the linear combination of preceding rows of U .

Algorithm 7 Update in sparse vector z
1: for (1 ≤ i ≤ k − 1 and lki 6= 0) do
2: zk:n = zk:n − lki ∗ ui ,k:n

3: end do

We only store the non-zero entries in the sparse vector z .
Features required in sparse Vector z :

Column Index j lookup: Should be O(1) for faster lookups,
Insertion of entry z [j]: Should be O(1),
Erasing entry z [j]: Should be O(1),
Sorting z based on the column index j : Avg case O(nlog(n)).

© Fraunhofer ITWM

11th July 2019 23

Different data structures that implements the sparse vector z

We have used std::map, std::unordered_map and a custom implementation to implement sparse
vector z .
Custom Implementation:

(a) Dense (length n) and sparse vector (length N) (b) Insertion at index 2 (c) Deletion at index 1

[2] Fast Implementations of Sparse Sets in C++
https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus

© Fraunhofer ITWM

11th July 2019 24

Complexity of different data structures

std::map std::unordered_map Custom Implementation
Lookup (find) O(log(n)) O(n) worst case, O(1) avg case O(1)
Insertion O(log(n)) O(n) worst case, O(1) avg case O(1)
Deletion (erase) O(log(n)) O(n) worst case, O(1) avg case O(1)
Sort Already Sorted O(nlogn) O(nlogn)

Tabelle: Time complexity

std::map std::unordered_map Custom Implementation
Space Complexity O(n) O(n) O(N) + O(n)

Tabelle: Space complexity

n: length of the dense vector,
N : length of the sparse vector (n << N).

© Fraunhofer ITWM

11th July 2019 25

Computational cost to generate the sparse vector z

std::map std::unordered_map
Custom
Implementation

Fill sparse vector z with
A(k,k:n) O(C0) O(C0) O(C0)

Lookup and insert nlog(n) + O(n)
O(n2) in worst case,
O(n) in avg case O(n)

Dropping (tau + p) 2*O(n) + n*log(p) 2*O(n) + n*log(p) 2*O(n) + n*log(p)
Sort based on index Already sorted O(plog(p)) O(plog(p))

Total Computation Cost
nlog(n) + log(p)*n +

O(n)

Worst Case:
O(n2) + log(p)*n + O(n)

Avg Case:
O(log(p)*n) + O(n)

log(p)*n + O(n)

p = constant in general, p = n in case of full fill-in in z .

© Fraunhofer ITWM

11th July 2019 26

Computational Time vs Matrix Size

 0

 1e+12

 2e+12

 3e+12

 4e+12

 5e+12

 6e+12

 7e+12

 8e+12

 9e+12

 0 50000 100000 150000 200000 250000 300000 350000

#
C

P
U

 C
y
cl

es

Size of the matrix from FD 2D Poisson Problem

Serial CroutLU Factorization

map_with_insert
umap_with_stdsort

umap_with_psort_piter
spvec_with_stdsort

© Fraunhofer ITWM

11th July 2019 27

Log of Computational Time vs Matrix Size

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 0 50000 100000 150000 200000 250000 300000 350000

lo
g
 o

f
#
C

P
U

 C
y

cl
es

Size of the matrix from FD 2D Poisson Problem

Serial CroutLU Factorization

map_with_insert
umap_with_stdsort

umap_with_psort_piter
spvec_with_stdsort

© Fraunhofer ITWM

11th July 2019 28

Profiler reading: using std::map to store the sparse vector

insert in std::map takes up 65.6 % time of the Crout LU factorization.

© Fraunhofer ITWM

11th July 2019 29

Profiler reading: using std::unordered_map to store the sparse vector

find in std::unorderd_map takes up 35.6 % time of the Crout LU factorization.

© Fraunhofer ITWM

11th July 2019 30

Profiler reading: Custom implementation for the sparse vector

insert in the custom implementation takes up only 18.4 % time of the Crout LU factorization.

© Fraunhofer ITWM

11th July 2019 31

Summary and future outlook

Understood Multilevel Parallel Crout ILU factorization algorithm of matrix A.

Insert in Sparse vector is the bottleneck in Serial implementation.

Optimized using custom implementation of Sparse vector.

Since the serial implementation looks good (reasonably optimal), we will start parallel implentation.

© Fraunhofer ITWM

11th July 2019 32

Questions/Discussion?

© Fraunhofer ITWM

11th July 2019 33

References

http://www.gaspils.de/.

https:
//www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus.

José Ignacio Aliaga, Rosa M. Badia, Maria Barreda, Matthias Bollhöfer, Ernesto Dufrechou, Pablo
Ezzatti, and Enrique S. Quintana-Ortí.
Exploiting task and data parallelism in ilupack’s preconditioned CG solver on NUMA architectures and
many-core accelerators.
Parallel Computing, 54:97–107, 2016.

Daniel Gruenewald Christian Simmendinger Mirko Rahn.
Gaspi tutorial.

Alberto F. Martin Enrique S. Quintana-Orti Jose I. Aliaga, Matthias Bollheofer.
Scheduling strategies for parallel sparse backward/forward substitution.

© Fraunhofer ITWM

11th July 2019 34

http://www.gaspils.de/
https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus
https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus

	Iterative Solvers for Sparse Linear Systems
	GaspiLS Linear Solver Library

	Crout Incomplete LU (ILU) factorization of A
	Serial Crout ILU Method
	Multilevel Crout ILU Method
	Parallelization of Crout ILU Method

	Sparse Vector Update in Serial Crout ILU Factorization
	Data Structures to Implement Sparse Vector
	Profiler Readings

