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MHD Model

I MHD models electrically conductive fluids (such as liquid
metals, plasma, salt water, etc) in an electromagnetic field

I Applications: electromagnetic pumping, aluminum electrolysis,
the Earth’s molten core and solar flares

I MHD couples electromagnetism (governed by Maxwell’s
equations) and fluid dynamics (governed by the Navier-Stokes
equations)
I Motion of the conductive fluid induces and modifies the

existing electromagnetic field
I Electromagnetic field generates a force on the fluid
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Continuous MHD Model

Elliptic PDE in steady state

−ν ∆u + (u · ∇)u +∇p − κ (∇× b)× b = f in Ω,

∇ · u = 0 in Ω,

κνm∇× (∇× b) +∇r − κ∇× (u× b) = g in Ω,

∇ · b = 0 in Ω,

with appropriate boundary conditions.

I (∇× b)× b: Lorentz force accelerates the fluid particles in
the direction normal to the electric and magnetic fields

I ∇× (u × b): electromotive force modifying the magnetic field
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Discretization: Finite Element Method

Weak formulation: Integrate (u, p,b, r) against a set of test
functions∫

Ω
ν∇u · ∇v +

∫
Ω

(u · ∇)u · v +

∫
Ω
κ (v × b) · ∇ × b−

∫
Ω
∇ · v · p =

∫
Ω
f · v,

−
∫

Ω
∇ · u · q = 0,∫

Ω
κνm∇× b · ∇ × c−

∫
Ω
κ (u× b) · ∇ × b +

∫
Ω
c · ∇r =

∫
Ω
g · c,∫

Ω
b · ∇s = 0.
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Discretization: Finite Element Method

Mixed finite elements: H1(Ω)× L2(Ω)× H(curl,Ω)× H1(Ω)
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Discretized and Linearized MHD Model:
F BT CT 0
B 0 0 0

−C 0 M DT

0 0 D 0




δu
δp
δb
δr

 =


ru
rp
rb
rr

,
C : coupling terms; F : convection–diffusion term; B: fluid divergence
operator; M: curl-curl operator; D: magnetic divergence operator
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MHD Preconditioners

I Phillips, Elman, Cyr, Shadid, and Pawlowski (2014, 2016)
derived block triangular preconditioners for a block 3-by-3 and
4-by-4 formulation of the MHD model

I Adler, Benson, Cyr, MacLachlan, and Tuminaro (2016)
developed an “all-at-once” type multigrid solver based on
Vanka smoothers for the 4-by-4 formulation

I Wathen, G., and Schötzau (2017): Schur complement-based
preconditioner

I Wathen and G. (2019): approximate inverse-based
preconditioner
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Ideal preconditioning
Non-singular (1, 1) block (as in Navier-Stokes)

K =

(
F BT

B 0

)
; P =

(
F 0
0 BF−1BT

)
Murphy, Golub & Wathen (2000) showed that P−1K has three

eigenvalues (1 and 1
2 ±

√
5

2 ). Can insert BT in (1,2) block for
nonsymmetric problem.

K =

(
M DT

D 0

)
; P =

(
M + DTW−1D 0

0 W

)
, where W is SPD

M singular with nullity m (as in time-harmonic Maxwell)

G. & Schötzau (2006) showed that P−1K has exactly two
eigenvalues: ±1
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Block preconditioning

Combine established preconditioners for the sub-problems

MMHD
I =


F BT CT 0
0 −BF−1BT 0 0

−C 0 M + DTL−1D 0
0 0 0 L


Combining fluid and magnet field using Schur complement
technique

MMHD
S =


F + MC CT BT 0

0 M + DTL−1D 0 0
0 0 −BF−1BT 0
0 0 0 L


where MC = CTM + DTL−1D−1C
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Spectral Structure: Clustering Effect

Red: imaginary part of eigenvalues

Blue: real part of eigenvalues

Eigenvalues of the preconditioned
matrix (MMHD

I )−1K
Eigenvalues of the preconditioned
matrix (MMHD

S )−1K
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Numerical Software

I FEniCS: finite element discretization (Sweden/USA/UK)

I mshr: mesh generator (utilizing Tetgen and CGAL)

I PETSc: linear algebra backend (Argonne National Lab)

I Hypre: AMG solver (Lawrence Livermore National Lab)

I MUMPS: sparse direct solver (France)
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Results

` DoF timesolve timeNL itNL itIav itDav

1 527 0.03 0.9 4 18.8 18.0
2 3,041 0.22 3.5 3 26.7 22.3
3 20,381 1.77 26.6 3 37.0 24.7
4 148,661 22.11 237.0 3 40.7 26.0
5 1,134,437 206.43 2032.7 3 44.3 -
6 8,861,381 2274.28 19662.0 3 50.0 -

Table: 3D smooth: Number of nonlinear iterations and number of
iterations to solve the MHD system with κ = 1, ν = 1 and νm = 10
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Approximate Inverse

I Estrin & G. (2015): an inverse formula for saddle-point
systems with a maximally rank-deficient leading block(

A BT

B 0

)
with rank(A) = n −m, rank(B) = m, and
ker(A) ∩ ker(B) = {0}.

I The mixed Maxwell formulation used falls into this class of
saddle-point systems

I If the leading block has a maximal nullity then the inverse has
a zero (2,2) block and the other blocks can be represented by
the null-space of the leading block
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Discretized and Linearized Equations

Back to the equations we solve in the nonlinear iteration (with a
slight change of notation):

F (u) BT C (b)T 0
B 0 0 0

−C (b) 0 M DT

0 0 D 0




δu
δp
δb
δr

 =


ru
rp
rb
rr


} nu rows

} mu rows

} nb rows

} mb rows

Let

Kx =

(
KNS KT

C

−KC KM

) (
xv
xb

)
=

(
fu
fb

)
where KNS, KC and KM are the Navier-Stokes, coupling and
Maxwell block matrices
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General Inverse of Saddle Point Matrix

A =

(
A BT

B 0

)

A ∈ Rn×n, B ∈ Rm×n

If A is non-singular then from Benzi, Golub & Liesen (2005)

A−1 =

(
A−1 + A−1BTS−1BA−1 −A−1BTS−1

−S−1BA−1 S−1

)
Will be useful for the Navier-Stokes block
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Maximal Nullity of Leading Block

Estrin & G. (2015): If A has nullity m then the (2,2) block of the
inverse is zero. The inverse formula is

A−1 =

(
A−1
W (I − DTW−1GT ) GW−1

W−1GT 0

)
,

where W is a (free) symmetric positive definite matrix,

AW = A + BTW−1B and G = A−1
W BT .

This comes handy for the block Schur complement associated with
the 4× 4 block MHD matrix
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Block Schur Complement

Then

S = KM +KCK−1
NSK

T
C =

(
M + CK1C

T DT

D 0

)

Remark
Note that the null CT and M have the same null space (discrete
gradients). Therefore,

dim(null(M + CK1C
T )) = mb,

where mb is the number of rows of the magnetic discrete
divergence matrix D
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Block Schur Complement

Then

S = KM +KCK−1
NSK

T
C =

(
M + CK1C

T DT

D 0

)
Using Estrin & G. (2015):

S−1 =

(
M−1

F (I − DTW−1GT ) GW−1

W−1GT 0

)
,

where W is a (free) symmetric positive definite matrix,

MF = M + DTW−1D + CK1C
T and G = M−1

F DT .
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Sparse Block Approximation

→

Sparsify utilizing:

1. Small mesh-based block elements

2. Null-space properties

3. Approximate Schur complements

Note: Never explicitly form the dense blocks
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Eigenvalue Distribution

Figure: Eigenvalues of preconditioned matrix P−1
1 K where red are the

imaginary and blue are the real parts of the eigenvalues.
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3D Cavity Driven Flow

u = (1, 0, 0) on z = 1,
u = (0, 0, 0) on x = ±1, y = ±1, z = −1,
n× b = n× bN on ∂Ω,
r = 0 on ∂Ω,

where bN = (−1, 0, 0).
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3D Cavity Driven Flow

` DoFs timeA itANL itAO
1 14,012 7.58 4 57.0
2 28,436 22.21 4 56.2
3 64,697 65.95 4 56.0
4 245,276 271.48 4 56.0
5 937,715 1255.15 4 55.5
6 5,057,636 17656.36 4 58.5

Table: 3D Cavity Driven using both the approximate inverse and block
triangular preconditioner with parameters κ = 1e1, ν = 1e-1, νm = 1e-1
and Ha =

√
1000
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Fichera Corner

Figure: Example Fichera corner domain for mesh level ` = 3
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Fichera Corner

` DoFs timeA itANL itAO
1 34,250 15.64 4 29.2
2 57,569 30.41 4 29.2
3 89,612 52.90 4 28.8
4 332,744 232.23 4 27.8
5 999,269 1026.31 4 27.8
6 5,232,365 11593.47 5 28.6

Table: Fichera corner using the approximate inverse preconditioner
κ = 1e1, ν = 1e-2, νm = 1e-2 and Ha =

√
1e5.
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Thank you!
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