
Design and Implementation of a Parallel Threshold Markowitz
Algorithm

Tim Davis, Iain Duff and Stojce Nakov

Texas A&M University, CERFACS, STFC Rutherford Appleton Laboratory

Sparse Days,
Toulouse, France

11th − 12thJuly2019

Introduction

Goal: solve highly unsymmetric sparse systems.

I These do occur in, for example ...

I chemical engineering
I linear programming
I economic modelling
I power systems

Both code and matrices can be very evil

Introduction

Goal: solve highly unsymmetric sparse systems.

I These do occur in, for example ...

I chemical engineering
I linear programming
I economic modelling
I power systems

Both code and matrices can be very evil

Introduction

Goal: solve highly unsymmetric sparse systems.

I These do occur in, for example ...
I chemical engineering
I linear programming
I economic modelling
I power systems

Both code and matrices can be very evil

Introduction

Goal: solve highly unsymmetric sparse systems.

I These do occur in, for example ...
I chemical engineering
I linear programming
I economic modelling
I power systems

Both code and matrices can be very evil

Highly unsymmetric systems

si(A) =
numberi 6=j{aij ∗ aji 6= 0}

nz{A}

A matrix A is highly unsymmetric if
si(A) < 0.9

Matrix from econometric model of SE Asia

State of the art solvers: MA48, UMFPACK, SuperLU, MUMPS.

Highly unsymmetric systems

si(A) =
numberi 6=j{aij ∗ aji 6= 0}

nz{A}

A matrix A is highly unsymmetric if
si(A) < 0.9

Matrix from econometric model of SE Asia

State of the art solvers: MA48, UMFPACK, SuperLU, MUMPS.

Highly unsymmetric systems

si(A) =
numberi 6=j{aij ∗ aji 6= 0}

nz{A}

A matrix A is highly unsymmetric if
si(A) < 0.9

Matrix from econometric model of SE Asia

State of the art solvers: MA48, UMFPACK, SuperLU, MUMPS.

Highly unsymmetric systems

si(A) =
numberi 6=j{aij ∗ aji 6= 0}

nz{A}

A matrix A is highly unsymmetric if
si(A) < 0.9

Matrix from econometric model of SE Asia

State of the art solvers: MA48, UMFPACK, SuperLU, MUMPS.

Highly unsymmetric systems

si(A) =
numberi 6=j{aij ∗ aji 6= 0}

nz{A}

A matrix A is highly unsymmetric if
si(A) < 0.9

Matrix from econometric model of SE Asia

State of the art solvers: MA48, UMFPACK, SuperLU, MUMPS.

Threshold Markowitz pivoting

I Threshold value
Consider only entries aij that satisfy

|aij | ≥ u ∗max
k
|akj |, k = 1, n

where u is a threshold parameter 0 < u ≤ 1.0.

I Markowitz threshold
If there are ri entries in row i and cj entries in column j , the Markowitz count for
the entry aij is given by M(aij) = (ri − 1)(cj − 1). In each column, consider only
the entries that that satisfy the threshold test M(aij) ≤ α ∗minmarkowitz where
minmarkowitz is the minimum Markowitz cost for an entry in the matrix.

Threshold Markowitz pivoting

I Threshold value
Consider only entries aij that satisfy

|aij | ≥ u ∗max
k
|akj |, k = 1, n

where u is a threshold parameter 0 < u ≤ 1.0.

I Markowitz threshold
If there are ri entries in row i and cj entries in column j , the Markowitz count for
the entry aij is given by M(aij) = (ri − 1)(cj − 1). In each column, consider only
the entries that that satisfy the threshold test M(aij) ≤ α ∗minmarkowitz where
minmarkowitz is the minimum Markowitz cost for an entry in the matrix.

Threshold Markowitz pivoting

I Threshold value
Consider only entries aij that satisfy

|aij | ≥ u ∗max
k
|akj |, k = 1, n

where u is a threshold parameter 0 < u ≤ 1.0.

I Markowitz threshold
If there are ri entries in row i and cj entries in column j , the Markowitz count for
the entry aij is given by M(aij) = (ri − 1)(cj − 1). In each column, consider only
the entries that that satisfy the threshold test M(aij) ≤ α ∗minmarkowitz where
minmarkowitz is the minimum Markowitz cost for an entry in the matrix.

High-level algorithm description

while size(A) > 1 do

Find a set of independent pivots
Update the trailing matrix

end while

Switch to dense factorization.

High-level algorithm description

while size(A) > 1 do
Find a set of independent pivots

Update the trailing matrix

end while

Switch to dense factorization.

High-level algorithm description

while size(A) > 1 do
Find a set of independent pivots

Update the trailing matrix

end while

Switch to dense factorization.

High-level algorithm description

while size(A) > 1 do
Find a set of independent pivots
Update the trailing matrix

end while

Switch to dense factorization.

High-level algorithm description

while density(A) < eps do
Find a set of independent pivots
Update the trailing matrix

end while

Switch to dense factorization.

High-level algorithm description

while density(A) < eps do
Find a set of independent pivots
Update the trailing matrix

end while

Switch to dense factorization.

Luby’s Algorithm for a Maximal Independent Set (MIS)

Input G = (V,E) an undirected graph
Output I ⊆ V , an MIS

I ← ∅
G ′ = (V ′,E ′)← G = (V ,E)
while V ′ 6= ∅ do

assign random score to each node in V ′

I ′ ← nodes having highest score among their neighbours
I ← I ∪ I ′

Y ← I ′ ∪ N(I ′)
Set G ′ = (V ′,E ′) to the induced subgraph on V ′ − Y

end while

Luby’s Algorithm for a Maximal Independent Set (MIS)

Input G = (V,E) an undirected graph
Output I ⊆ V , an MIS

I ← ∅
G ′ = (V ′,E ′)← G = (V ,E)
while V ′ 6= ∅ do

assign random score to each node in V ′

I ′ ← nodes having highest score among their neighbours
I ← I ∪ I ′

Y ← I ′ ∪ N(I ′)
Set G ′ = (V ′,E ′) to the induced subgraph on V ′ − Y

end while

Luby’s Algorithm for a Maximal Independent Set (MIS)

Input G = (V,E) an undirected graph
Output I ⊆ V , an MIS

I ← ∅
G ′ = (V ′,E ′)← G = (V ,E)
while V ′ 6= ∅ do

assign random score to each node in V ′

I ′ ← nodes having highest score among their neighbours
I ← I ∪ I ′

Y ← I ′ ∪ N(I ′)
Set G ′ = (V ′,E ′) to the induced subgraph on V ′ − Y

end while

Luby’s Algorithm for a Maximal Independent Set (MIS)

Input G = (V,E) an undirected graph
Output I ⊆ V , an MIS

I ← ∅
G ′ = (V ′,E ′)← G = (V ,E)
while V ′ 6= ∅ do

assign random score to each node in V ′

I ′ ← nodes having highest score among their neighbours
I ← I ∪ I ′

Y ← I ′ ∪ N(I ′)
Set G ′ = (V ′,E ′) to the induced subgraph on V ′ − Y

end while

Luby’s Algorithm for a Maximal Independent Set (MIS)

Input G = (V,E) an undirected graph
Output I ⊆ V , an MIS

I ← ∅
G ′ = (V ′,E ′)← G = (V ,E)
while V ′ 6= ∅ do

assign random score to each node in V ′

I ′ ← nodes having highest score among their neighbours
I ← I ∪ I ′

Y ← I ′ ∪ N(I ′)
Set G ′ = (V ′,E ′) to the induced subgraph on V ′ − Y

end while

We then continue the process to obtain an MIS with 5 nodes.

Luby’s Algorithm for a Maximal Independent Set (MIS)

Input G = (V,E) an undirected graph
Output I ⊆ V , an MIS

I ← ∅
G ′ = (V ′,E ′)← G = (V ,E)
while V ′ 6= ∅ do

assign random score to each node in V ′

I ′ ← nodes having highest score among their neighbours
I ← I ∪ I ′

Y ← I ′ ∪ N(I ′)
Set G ′ = (V ′,E ′) to the induced subgraph on V ′ − Y

end while

We have adopted the Luby’s algorithm for directed graphs.

Parallel Solver for Highly Unsymmetric Matrices (ParSHUM) library

Parallel Solver for Highly Unsymmetric Matrices (ParSHUM) library

Discard all numerically ineligible entries and calculate the minimum Markowitz cost.

Parallel Solver for Highly Unsymmetric Matrices (ParSHUM) library

Choose potential pivots that satisfy the Markowitz threshold test, one for each column
and assign a score for each one. The pivot score is associated with the column.

Parallel Solver for Highly Unsymmetric Matrices (ParSHUM) library

For each potential pivot scan its row, comparing its score with the score of the
columns with entries in the row.

Parallel Solver for Highly Unsymmetric Matrices (ParSHUM) library

Discard the column with a potential pivot with lower score.

Parallel Solver for Highly Unsymmetric Matrices (ParSHUM) library

The set of independent pivots.

Parallel Solver for Highly Unsymmetric Matrices (ParSHUM) library

This results in a reordered matrix of the form:

Parallel Solver for Highly Unsymmetric Matrices (ParSHUM) library

The trailing matrix is then updated by a sparse matrix-matrix multiply.

Parallel Solver for Highly Unsymmetric Matrices (ParSHUM) library

The pivot search is then repeated on the reduced matrix.

Experimental set-up

HPC2N platform at
Ume̊a University

Each node:
28 Intel Xeon E5-2690v4
35 MB of shared L3 cache
128 GB RAM memory

Matrix Order Entries si
×103 ×106

nug30 52.4 0.24 0.00
esc32a 63.6 0.31 0.00
lung2 109 0.49 0.57
twotone 120 1.22 0.26
hvdc2 190 1.35 0.99
InnerLoop1 197 0.75 0.44
Jacobian unbalancedLdf 203 2.41 0.80
mac econ fwd500 206 1.27 0.07
rajat21 411 1.89 0.76
Newton Iteration1 427 2.38 0.14
esc64a 504 2.40 0.00
mc2depi 525 2.10 0.00
pre2 659 5.96 0.36

Effect of the threshold value on the backward error

 1e-20

 1e-15

 1e-10

 1e-05

 1

 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

b
a
c
k
w

a
rd

 e
rr

o
r

threshold value

nug30
esc23a

lung2
twotone

hvdc2
InnerLoop1

Jacobian_unbalancedLdf
mac_econ_fwd500

rajat21
Newton_Iteration1

mc2depi
pre2

Effect of the Markowitz threshold on the fill-in factor (nz(LU)/nz(A))

 0

 5

 10

 15

 20

 25

 2 4 8 16 32 64 128

�

ll
-i

n
 f

a
c
to

r

Markowitz threshold

lung2
twotone

hvdc2
InnerLoop1

Jacobian_unbalancedLdf
rajat21

Newton_Iteration1

Scalability on the mc2depi and twotone matrices

 0

 200

 400

 600

 800

 1000

 1200

-2 0 2 4 6 8 10 12 14 16

ti
m

e
 (

s
)

#threads

Pivot search
Schur update

Dense factorization

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-2 0 2 4 6 8 10 12 14 16

ti
m

e
 (

s
)

#threads

Pivot search
Schur update

Dense factorization

Comparison of ParSHUM, MUMPS and UMFPACK on single NUMA node (14 cores)

ParSHUM MUMPS UMFPACK

Matrix time fill-in time fill-in time fill-in

nug30 0.71 142. 6.19 730 48.15 463.
esc32a 0.46 70.9 10.59 758 71.0 341.
lung2 0.04 1.48 —– —— 0.10 1.44
twotone 0.35 7.37 2.22 25.4 0.49 5.45
hvdc2 0.38 6.91 1.13 2.14 0.38 2.06
InnerLoop1 0.13 2.71 1.64 3.90 0.30 2.48
Jacobian unbalancedLdf 0.99 10.9 1.52 3.45 0.74 3.88
mac econ fwd500 33.5 450. 10.5 56.4 4.62 57.5
rajat21 0.11 1.64 —– —– 44.5 1.89
Newton Iteration1 0.46 3.46 4.26 6.02 1.00 2.55
esc64a 12.8 155 —– 2151 —– —–
mc2depi 104. 302. 4.60 25 4.36 38.6
pre2 13.0 57.0 9.73 18.4 25.8 32.3

Table: The execution time and the fill-in factor for ParSHUM, MUMPS and UMFPACK.

Towards distributed memory:
Singly Bordered Block decomposition using Zoltan

Global view

Local view

Towards distributed memory:
Singly Bordered Block decomposition using Zoltan

Global view
Local view

Towards distributed memory:
Singly Bordered Block decomposition using Zoltan

Global view
Local view

Towards distributed memory:
Singly Bordered Block decomposition using Zoltan

Global view
Local view

Experimental set-up

HPC2N platform at
Ume̊a University

Each node:
28 Intel Xeon E5-2690v4
35 MB of shared L3 cache
128 GB RAM memory

Matrix Order Entries si
×103 ×106

InnerLoop1 197 0.75 0.44
InnerLoop1 197 0.75 0.44
InnerLoop1 197 0.75 0.44
InnerLoop1 197 0.75 0.44
Jacobian unbalancedLdf 203 2.41 0.80
Newton Iteration1 427 2.38 0.14
Newton detailed 7355 24 0.29

Bordered Block size

 0

 5000

 10000

 15000

 20000

 2 4 8 16 32 64 128

s
iz

e

#blocks

InnerLoop1
InnerLoop2
InnerLoop3
InnerLoop4

Jacobian unbalancedLdf
Newton Iteration1

Newton detailed

Scalability

#MPI processes

Matrix 1 2 4 8

InnerLoop1 0.15 0.08 0.06 0.05
InnerLoop2 0.15 0.08 0.06 0.05
InnerLoop3 0.15 0.09 0.06 0.05
InnerLoop4 0.15 0.09 0.06 0.05
Jacobian unbalancedLdf 1.11 0.52 0.35 0.18
Newton Iteration1 0.49 0.30 0.14 0.09
Newton detailed 7.39 3.01 1.67 1.63

The execution time in seconds for ParSHUM on the test matrices partitioned in SBBD
form. One numa node (14 cores) is used per process.

Comparison with MUMPS and SuperLU

ParSHUM MUMPS SuperLU

Matrix time fill-in time fill-in time fill-in

InnerLoop1 0.05 3.03 0.23 3.90 1.11 6.02
InnerLoop2 0.05 2.82 0.25 3.72 1.11 5.57
InnerLoop3 0.05 2.78 0.17 3.72 1.10 5.60
InnerLoop4 0.05 2.41 0.15 3.73 1.15 5.56
Jacobian unbalancedLdf 0.18 6.75 0.28 3.45 1.05 3.59
Newton Iteration1 0.09 3.57 0.42 6.02 2.59 5.60
Newton detailed 1.63 5.32 7.88 6.09 52.4 5.39

Conclusions and future work

Conclusions:

I We have developed a generalization of Luby’s algorithm for directed graphs.

I We have used this to develop a multi-threaded threshold Markowitz code
(ParSHUM library).

I In general it outperforms established codes.

Future work:

I Ongoing work on SBBD to exploit distributed systems.

I Develop a GPU version of the solver.

THANK YOU FOR YOUR ATTENTION

