
Vertex Weighted Matching: Parallel
Approximation Algorithms

Ahmed Al-Herz and Alex Pothen
Department of Computer Science

Purdue University, USA

July 11, 2019

Outline

I Matching concepts

I Serial 2/3-approximation algorithms

I Parallel 2/3-approx. algorithm and Synchronization

I Experimental results

I Conclusions and References

Definitions

I Matching: a set of vertex-disjoint edges; hence at most one
edge incident on each vertex.

I Maximum cardinality, edge-weighted matching

I We consider maximum vertex weighted matching. Arises in
internet advertising as well as in computing sparse bases
for the null space and column space of matrices, crew
scheduling, etc.

Online Vertex-Weighted Matching

Aldi

φ(x1)

Amazon

φ(x2)

Flipkart

φ(x3)

Intermarche

φ(x4)

Taobao

φ(x5)

Baklava

Chocolate

Green Tea

Lichi

I There is an O(1− 1/e) ≈ 0.6-approx. algorithm for the
online matching problem.

Online Vertex-Weighted Matching

I Mehta (2012) survey: “the largest matching problem in the
world, in terms of money and items matched”. Asks for an
approximate offline algorithm for large graphs.

I We report the first parallel 2/3-approx. algorithm (offline)
for maximum vertex-weighted matching.

Matching concepts

I Alternating path: a path that has alternating matching
and non-matching edges.

I Augmenting path: an odd length alternating path that
begins and ends with unmatched edges.

I By swapping matching and non-matching edges, we
increase the weight and the cardinality of the matching.

v1 v2 v3 v4

Matching concepts

I (Weight)-Increasing path: an even length alternating path
whose unmatched start vertex u has higher weight than its
matched end vertex v; hence φ(u) > φ(v).

u

10

v1 v2

24

v3 v4

3

I By swapping matching and non-matching edges, we
increase the weight (but not the cardinality) of the
matching.

u

10

v1 v2

24

v3 v4

3

A More General Definition

I k-augmentation: an augmenting path or increasing path
with at most k non-matching edges.

I 2-augmentation: augmenting paths of lengths one and
three; increasing paths of length two and four.

Theorem
If a matching does not admit a k-augmentation, then it is a
k/(k + 1)-approximation to a maximum weight matching.

I Theorem is true for maximum cardinality and maximum
edge-weighted matchings as well.

2/3-Direct Approximation Algorithm

1: procedure 2/3-DIRECT(G = (V,E, φ))
2: Initialize the matching M to be empty;
3: Order the vertices in non-increasing order of weights;
4: for each unmatched vertex u in order do
5: Search for an aug. path P of length at most 3 that

reaches a heaviest unmatched vertex v;
6: If P is found, augment the matching M with M ⊕ P ;
7: end for
8: end procedure

Dobrian, Halappanavar, Pothen, Al-Herz, SISC (2019)

2/3-Iterative Approximation Algorithm

1: procedure 2/3-ITER(G = (V,E, φ))
2: [Initialize with a 2/3-approx. cardinality matching;]
3: while a 2-augmentation exists do
4: Search for a 2-augmentation P from u;
5: If P is found, augment the matching with M ⊕ P ;
6: Update the set of unmatched vertices U ;
7: end while
8: end procedure

Direct vs. Iterative Algorithms for MVM

I The Direct algorithm employs augmenting paths only, and
no increasing paths; Iterative algorithm employs both.

I The Direct algorithm sorts vertices and matches vertices in
non-decreasing order of weights, while the Iterative
algorithm processes unmatched vertices in any order, and
hence can be implemented in parallel.

I The Iterative algorithm can be initialized with another
matching; the Direct algorithm cannot be initialized.

I Worst-case time complexity (∆ is maximum degree, n no.
of vertices, m no. of edges):
Direct: O(m log ∆ + n log n)
Iterative: O(m∆2)

Parallel 2/3-approximate cardinality matching
algorithm

1: procedure PAR-2/3-ITER(G = (V,E, φ))
2: Initialize with 2/3-approx. cardinality matching com-

puted in parallel;
3: while a 2-augmentation exists in parallel do
4: Search for a 2-augmentation P from an unmatched

vertex u;
5: If P is found, try to lock vertices on P ;
6: If locks obtained, augment M with M ←M ⊕ P ;
7: Release all locks;
8: Update set of unmatched vertices;
9: end while

10: end procedure

Livelock

u1

v1
v2 v3

v4

u2

v5

v6

u3

v2k−1

v2k

uk

Threads {Ti} computes an increasing path beginning at ui that
includes matched edges (v2i−1, v2i) and (v2i+1, v2i+2). Thread
Tk includes matched edges (v2k−1, vk) and (v1, v2).

Livelock

u1

v1
T1

v2 v3

T2
v4

u2

v5
T3

v6

u3

v2k−1

Tk

v2k

uk

If each thread Ti locks v2i−1, we have a cyclic wait!
Cyclic wait happens also for augmenting paths of length 3.

Locking procedure

I If u, v are the endpoints of an augmenting path, then we
permit a thread to augment from u to v only if u < v.

I We lock the lower numbered endpoint of a matching edge.

v1 v2 v3 v4

Lock (in order) v1, v4, min{v2, v3}

u

10

v1 v2

24

v3 v4

3

Let m1 = min{v1, v2}, m2 = min{v3, v4}
Lock (in order) u, min{m1,m2} and max{m1,m2}

Parallel Iterative Algorithm and Locks

I If a thread fails to acquire a lock, it releases all locks and
processes the next unmatched vertex or moves to the next
iteration.

I Bad things that could happen:
Deadlock: some thread waiting for ever to acquire a lock.
Livelock: some threads cannot make any progress in
matching their vertices.
Starvation: some thread cannot match any vertices at all.

No bad news Theorem
While there is a 2-augmentation in the graph, in every iteration
of the parallel iterative algorithm at least one thread will
succeed in matching a vertex.

The set of test problems

Graph |V | Degree |E|
Mean SD/

Mean

kron g500 2 097 152 117.92 7.47 91 040 932
M6 3 501 776 5.99 0.14 10 501 936
hugetric 6 592 765 2.99 0.01 9 885 854
rgg n 2 23 s0 8 388 608 15.14 0.26 63 501 393
hugetrace 12 057 441 2.99 0.01 18 082 179
nlpkkt200 16 240 000 26.60 0.09 215 992 816
hugebubbles 19 458 087 2.99 0.01 29 179 764
road usa 23 947 347 2.41 0.39 28 854 312
europe osm 50 912 018 2.12 0.23 54 054 660

rmat-G500 48 877 747 85 28 15.48 2 084 251 521
rmat-SSCA 93 488 461 45.29 9.96 2 117 212 258
rmat-ER 134 217 728 32.00 0.29 2 147 483 625

Running Time of Algorithms

I Running time of a Maximum vertex weighted matching
algorithm on these problems ranges from 10 to 6000
seconds.

I Relative performance of 6 approximation algorithms are
computed by the ratio of the time for the Exact algorithm
and the time for the approximation algorithm.

Algorithm 1− ε- 2/3− ε 2/3- 2/3- 1/2- Suitor
Scal GPA- DIR ITER ITER

ROMA
ε = 1/3 ε = 0.01

Geom. Mean 0.63 1.3 23 40 110 43

Run times vs. Edges Searched

‐2

0

2

4

6

8

10

12

14

20 22 24 26 28 30 32 34 36 38

lo
g2
(t
im

e)

log2(scanned edges)

2/3‐IITER Suitor GPA‐ROMA

Linear (2/3‐IITER) Linear (GPA‐ROMA) Linear (Suitor)

Computed weights

I Gap to optimality (%) is

(1− Weight of approx. matching

Weight of maximum matching
) ∗ 100.

Graph 1− ε- 2/3− ε 2/3- 2/3- 1/2- Suitor
Scal. GPA- DIR ITER ITER

ROMA
ε = 1/3 ε = 0.01

Geom. Mean 1.25 0.23 0.32 0.084 0.76 3.3

The 2/3-approx. algorithms compute nearly optimal weights!

Speedup on 20 Xeon threads

0
2
4
6
8
10
12
14
16
18

rm
at‐ER

nlpkkt200

M
6

hugebubbles‐00010

hugetrace‐00010

hugetric‐00010

rgg_n_2_23_s0

road_usa

europe_osm

rm
at‐SSCA

kron_g500‐logn21

rm
at‐G

500
Sp
ee
du

p

2/3‐Iter 1/2‐Iter Suitor

Conclusions

I We have described a new serial 2/3-approximation
algorithm for the maximum vertex-weighted matching
problem.

I This algorithm can be adapted to provide the first parallel
algorithm with approximation ratio better than 1/2 for any
matching problem.

I Vertex-weighted matching problems provide hard test cases
for edge-weighted matching problems.

A Puzzle
Exact Edge-weighted Matching on GL7D20

Random Weights
Metric Original edge vertex

[0, 1] [0, 0.5]
summed

Time (s) 4.61 E0 1.330 E1 1.001 E5
Cardinality 1,437,546 1,437,546 1,437,546
No. augs. 1,437,546 1,437,546 1,437,546
Aug. path length
Maximum 9 61 2383
No. distinct 5 30 938
Mean 1.009 1.896 72.55

No. dual updates 1.35 E7 7.49 E6 3.92 E10
Time aug. paths 3.38 9.72 4.31 E4
Time dual updates 0.42 0.27 4.44 E3

References

I Ahmed Al-Herz and AP: A parallel 2/3-approx. alg. for
maximum vertex-weighted matching (MVM), Preprint,
2019.

I Ahmed Al-Herz and AP: A 2/3-approx. alg. for MVM in
non-bipartite graphs, Discrete Applied Mathematics, under
review, 2018. (Arxiv:1902.05877)

I Florin Dobrian, Mahantesh Halappanavar, AP, Ahmed
Al-Herz: A 2/3-approx. alg. for MVM in bipartite graphs,
SISC 41:A566-A591, 2019.

I AP, S M Ferdous, and Fredrik Manne: Approximation
algorithms in combinatorial scientific computing, Acta
Numerica, 28, pp. 541-633, 2019.

Scalability on 20 Xeon threads

0
2
4
6
8
10
12
14
16
18

rm
at‐ER

hugebubbles‐00010

rgg_n_2_23_s0

M
6

hugetrace‐00010

hugetric‐00010

road_usa

nlpkkt200

europe_osm

kron_g500‐logn21

rm
at‐SSCA

rm
at‐G

500
1/2‐IITER 2/3‐IITER Suitor

