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Sparse Matrix Factorization
❑ Factorization of a sparse symmetric positive definite matrix incurs fill.

￭ i.e., some zero entries in the original matrix will become nonzero in the factors.

❑ Elimination trees

￭ The elimination tree is a compact structure that encapsulates a lot of information related to the sparsity
of the Cholesky factor and the dependency among the columns.

● Schreiber 1982

● Liu 1986

● Liu 1990

￭ Have been generalized to nonsymmetric matrices

❑ Elimination trees have played an important role in designing efficient matrix algorithms.
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Parallel Sparse Matrix Factorization

❑ Work on practical parallel sparse matrix factorization started in 1980’s.

❑ New challenges (at the time) included

￭ Identifying tasks

￭ Mapping the matrix to the processing units and scheduling computational tasks among the processing
units.

❑ Because the elimination tree provides information on the column dependency, it was considered
to be an appropriate tool for studying data mapping and task scheduling.

￭ Much of the work was initially focused on level-by-level approaches.

￭ e.g., the tasks associated with the leaves of an elimination tree are independent.



UNI VERSITY OF
CALI FOR NI A 

Office of
Science Computing Sciences

Communication Needs in Parallel Sparse Matrix Factorization
❑ Another challenge in parallel sparse matrix factorization is getting a handle on the

communication cost.

￭ The level-by-level scheduling is convenient but it may not balance the work load, particularly on
distributed-memory platforms.

❑ The subtree-to-subcube mapping [George, Liu, Ng (1989)]

￭ Working on the Intel hypercube at the time

￭ Interested in analyzing the communication requirements in parallel sparse Cholesky on the hypercube.

￭ Took a model problem – k x k grid, with a 5-point (or 9-point) operator, ordered by nested dissection
(which is optimal in terms of fill and operations).

￭ The elimination tree was perfectly balanced.
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Communication Needs in Parallel Sparse Matrix Factorization
❑ Proposed scheduling:

￭ Assign all columns in the top separator to the dimension d hypercube.

￭ The separator divides the grid into 2 halves.  Each half forms a subtree.  Assign a dimension d-1
hypercube to each subtree.

￭ Recurse on the subtrees and subcubes.

❑ [George, Liu, Ng (1989)] proved that the communication volume was optimal for the model
problem.

❑ [Gao, Parlett (1990)] further proved that the number of messages was optimal and that the
communications are balanced.
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Communication Needs in Parallel Sparse Matrix Factorization
❑ The results in [George,Liu, Ng (1989)] and [Gao, Parlett (1990)] applied to k x k grids, ordered

using nested dissection.

❑ How about general sparse symmetric matrices?

❑ The elimination tree of a general sparse symmetric matrix is typically unbalanced.

￭ [Liu (1988)] proposed to perform ”tree rotations” to change the shape of the elimination tree while
preserving fill.

● Effects tended to be small and the new elimination tree remained unbalanced.

￭ The papers cited above made no claims that the subtree-to-subcube mapping would work well for
general sparse symmetric matrices.

￭ But it didn’t prevent people from extending it.

bcsstk14 (stiffness matrix associated with the roof of the Omni Coliseum in Atlanta)
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Extending subtree-to-subcube to general sparse matrices
❑ [Geist, Ng (1990)] probably was the first to attempt generalizing subtree-to-subcube to general sparse

symmetric matrices.

￭ Assign weights to nodes in the elimination tree.

￭ The weights are functions of the numbers of operations required by the subtrees.

￭ Use a bin-packing strategy to map tasks.

❑ [Pothen, Sun (1993)] proposed proportional subtree-to-subcube mapping.

￭ It was essentially a generalization of the one proposed by [George, Liu, Ng (1989)], but the processing units are
partitioned according to ratios of the weights associated with the subtrees.

❑ The subtree-to-subcube (and its variants) worked reasonably well until the number of processing units has
become large, as on today’s platforms.

￭ Dynamic scheduling [Amestoy,Duff, L’Excellent, Koster (2000)], [Faverge, Ramet (2008)]

￭ Prasanna and Musicus [Beaumont, Guermouche (2007)] 

❑ Subtree-to-subcube mappings don’t work well in all situations.

￭ Fan-both mappings conflicts with it (updates may be computed on processor not owning the data)
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What to do then???

❑ Elimination tree is spanning tree of task graph

 Not all dependencies are represented
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What to do then???

❑ Elimination tree is spanning tree of task graph

 Not all dependencies are represented

❑ Subtree-to-subcube / proportional mapping sacrifice processors on small outlying branches, bad
for unbalanced trees
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What to do then???

❑ Elimination tree is spanning tree of task graph

 Not all dependencies are represented

❑ Subtree-to-subcube / proportional mapping sacrifice processors on small outlying branches, bad
for unbalanced trees

❑ Current & future platforms (manycore, GPUs) have a significantly larger number of processing
elements

→ Finer granularity more likely to keep the hardware busy

→ Finer granularity more likely to overlap comm. with comp.
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Task formulations do work

❑ SymPACK, solver for sparse symmetric matrices

 Task based execution model

 UPC++ one-sided communications

 Coarse granularity distribution
 & task scheduling

 Unit is supernode

 Finer granularity & task scheduling

 Unit is block within a supernode
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Task formulations do work

❑ SymPACK, solver for sparse symmetric matrices

 Task based execution model

 UPC++ one-sided communications

 Coarse granularity distribution
 & task scheduling

 Unit is supernode

 Finer granularity & task scheduling

 Unit is block within a supernode

 Pastix, similar approach 
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Conclusion & future work
❑ Scheduling is VERY important

❑ Mapping based on the task graph instead of elimination tree?

❑ Aggregate updates using a tree pattern (reduction)

❑ Hybrid strategies:

 1D data distribution at leaves?

 3D layout at higher levels: multiple tasks on the same cell

❑ Accelerator / GPU support via asynchronous tasks

 Upcoming UPC++ with seamless local/remote host/device 
memory accesses
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