
Preconditioning for nonsymmetric
systems

Andy Wathen
Oxford University, UK

joint work with
Jingkai Mao (Oxford University)
Federico Danieli (Oxford University)

Sparse Days, CERFACS, Toulouse, 2019 – p.1/12



Krylov subspace methods

For self-adjoint problems/symmetric matrices, iterative
methods of choice exist: conjugate gradients for SPD,
MINRES otherwise

but many possible methods for non-self-adjoint
problems/nonsymmetric matrices: GMRES , BICGSTAB ,
QMR , IDR , . . .
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Krylov subspace methods

For self-adjoint problems/symmetric matrices, iterative
methods of choice exist: conjugate gradients for SPD,
MINRES otherwise

but many possible methods for non-self-adjoint
problems/nonsymmetric matrices: GMRES , BICGSTAB ,
QMR , IDR , . . .

For almost all need preconditioning

Preconditioner P such that

“P−1Bx = P−1b”

has much faster convergence with the appropriate iterative
method than Bx = b.
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Krylov subspace methods

Arises because of convergence guarantees:

• for symmetric matrices: descriptive convergence
bounds based on eigenvalues ⇒ a priori estimates of
iterations for acceptable convergence; good
preconditioning ensures fast convergence.

• for nonsymmetric matrices: by contrast, to date there
are no generally applicable and descriptive
convergence bounds even for GMRES ; for any of the
other nonsymmetric methods without a minimisation
property, convergence theory is extremely limited ⇒ no
good a priori way to identify what are the desired
qualities of a preconditioner

A major theoretical difficulty, but heuristic ideas abound!
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Real Toeplitz matrices
can use Pestana & W, 2015: If B is a real Toeplitz matrix then
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is the real symmetric (Hankel) matrix
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so can use MINRES with positive definite preconditioner
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Toeplitz → Circulant approximation, C, and diagonalization
C = F ∗ΛF by the FFT (O(n logn)) is a well known
approach.
To ensure positive definiteness, take the absolute value
circulant |C| = F ∗|Λ|F

Theorem (Pestana & W, 2015)

|C|−1
BY = J + R + E

where J is real symmetric and orthogonal with eigenvalues
±1, R is of small rank and E is of small norm

⇒ guaranteed fast convergence because MINRES
convergence only depends on eigenvalues which are
clustered around ±1 except for few outliers!

‘Krylov friendly’ → try GMRES simply with C; generally
converges in half the number of iterations
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Natural to investigate how sensitive to exact Toeplitz
structure.

Our simple test problem is the IVP:

y′(t) = ay(t) + g(t), y(0) = y0, t ∈ [0, T ]

approximated by the θ-method:

(−1 − a(1 − θ)h)yn + (1 − aθh)yn+1 = hg(tn)

and the BDF2 nethod

yn+2 − (4/3)yn+1 + (1/3)yn = (2/3)hg(tn+2)

where for a regular mesh we have

tn = nh, n = 0, 1, . . . , N and Nh = T.

Sparse Days, CERFACS, Toulouse, 2019 – p.6/12



Both are written in monolithic (all-at-once) form yielding

Bx = b

where for example for the θ-method with a regular grid we
have the exact Toeplitz matrix

B =
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,

b = 1 − aθh, c = −1 − a(1 − θ)h and the vector x
contains the solution at all time steps.
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For an irregular grid we set

tn = nh + δ Randh, n = 1, 2, . . . , N − 1

where Rand is, for each n, selected from a uniform random
distribution on [−1/2, 1/2].

δ = 0 gives a regular grid and therefore a Toeplitz matrix,
whereas increasingly irregular grids result for larger values
of δ. For increasing δ the coefficient matrix is further from
Toeplitz.

We precondition with the Strang circulant for the matrix
obtained by averaging along each diagonal and solve for
T = 10 with h = 0.01 and h = 0.1.
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For a genuinely irregular grid—100 grid points generated
randomly in [0, T ]—100 iterations are required as might be
expected for a Krylov method.
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In a further experiment we randomly generate matrices of
dimension 100 with differing distance from a circulant:
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Summary

The property of circulant matrices as excellent
preconditoners for Toeplitz matrices to some extent applies
for perturbations of Toeplitz matrices even in the
nonsymmetric case.
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Summary

The property of circulant matrices as excellent
preconditoners for Toeplitz matrices to some extent applies
for perturbations of Toeplitz matrices even in the
nonsymmetric case.

Reference:

Pestana, J. & Wathen, A.J., 2015,
‘A preconditioned MINRES method for nonsymmetric
Toeplitz matrices’,

SIAM J. Matrix Anal. Appl. 36, pp. 273–288.
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