
A massively-parallel algorithm for
Bordered Almost Block Diagonal systems on GPUs

Sparse Days Meeting 2019, Toulouse

Monica Dessole, Fabio Marcuzzi

July 11, 2019

Università degli Studi di Padova



Outline

1. Introduction

2. Structured Orthogonal Factorization - SOF

3. PARAllel Structured Orthogonal Factorization - PARASOF

4. Numerical Experiments

5. Conclusions and Future work

1



Introduction



BABD vs ABD systems

Boundary Value Problems for Ordinary Differential Equations (BVODEs)

y ′ = A(x)y(x) + q(x), Bay(a) + Bby(b) = 0, y , q ∈ Rn, x ∈ [a, b].

yield Bordered Almost Block Diagonal (BABD) system

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb





x0

x1

...

xN−1

xN

 =



b0

b1

...

bN−1

bN


where Si ,Ti ,Ba,Bb are square n × n blocks. When BCs are separable, i.e.

Ba =

[
B̄a

O

]
, Bb =

[
O
B̄b

]
, bN =

[
ba

bb

]
we obtain an Almost Block Diagonal (ABD) system

B̄a

S0 T0

. . .
. . .

SN−1 TN−1

B̄b





x0

x1

...

xN−1

xN

 =



ba

b0

...

bN−1

bb



2



BABD vs ABD systems

Boundary Value Problems for Ordinary Differential Equations (BVODEs)

y ′ = A(x)y(x) + q(x), Bay(a) + Bby(b) = 0, y , q ∈ Rn, x ∈ [a, b].

yield Bordered Almost Block Diagonal (BABD) system

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb





x0

x1

...

xN−1

xN

 =



b0

b1

...

bN−1

bN


where Si ,Ti ,Ba,Bb are square n × n blocks.

When BCs are separable, i.e.

Ba =

[
B̄a

O

]
, Bb =

[
O
B̄b

]
, bN =

[
ba

bb

]
we obtain an Almost Block Diagonal (ABD) system

B̄a

S0 T0

. . .
. . .

SN−1 TN−1

B̄b





x0

x1

...

xN−1

xN

 =



ba

b0

...

bN−1

bb



2



BABD vs ABD systems

Boundary Value Problems for Ordinary Differential Equations (BVODEs)

y ′ = A(x)y(x) + q(x), Bay(a) + Bby(b) = 0, y , q ∈ Rn, x ∈ [a, b].

yield Bordered Almost Block Diagonal (BABD) system

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb





x0

x1

...

xN−1

xN

 =



b0

b1

...

bN−1

bN


where Si ,Ti ,Ba,Bb are square n × n blocks. When BCs are separable, i.e.

Ba =

[
B̄a

O

]
, Bb =

[
O
B̄b

]
, bN =

[
ba

bb

]

we obtain an Almost Block Diagonal (ABD) system

B̄a

S0 T0

. . .
. . .

SN−1 TN−1

B̄b





x0

x1

...

xN−1

xN

 =



ba

b0

...

bN−1

bb



2



BABD vs ABD systems

Boundary Value Problems for Ordinary Differential Equations (BVODEs)

y ′ = A(x)y(x) + q(x), Bay(a) + Bby(b) = 0, y , q ∈ Rn, x ∈ [a, b].

yield Bordered Almost Block Diagonal (BABD) system

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb





x0

x1

...

xN−1

xN

 =



b0

b1

...

bN−1

bN


where Si ,Ti ,Ba,Bb are square n × n blocks. When BCs are separable, i.e.

Ba =

[
B̄a

O

]
, Bb =

[
O
B̄b

]
, bN =

[
ba

bb

]
we obtain an Almost Block Diagonal (ABD) system

B̄a

S0 T0

. . .
. . .

SN−1 TN−1

B̄b





x0

x1

...

xN−1

xN

 =



ba

b0

...

bN−1

bb



2



Motivations and other applications

Numerical methods for nonlinear BVODEs

y ′ = f (x , y(x)), y , f ∈ Rn, x ∈ [a, b]

g(y(a), y(b)) = 0.

require the solution of a sequence of BABD/ABD linear systems.

• Model Predictive Control

• Markov chains modeling

• Quantum Monte Carlo simulations

• Parameter estimation with non-linear DAE models

3



Motivations and other applications

Numerical methods for nonlinear BVODEs

y ′ = f (x , y(x)), y , f ∈ Rn, x ∈ [a, b]

g(y(a), y(b)) = 0.

require the solution of a sequence of BABD/ABD linear systems.

• Model Predictive Control

• Markov chains modeling

• Quantum Monte Carlo simulations

• Parameter estimation with non-linear DAE models

3



Structured Orthogonal Factorization
- SOF



Local Factorization [Wright 1992]



S0 T0 b0

. . .
...

Sk1−1 Tk1−1 bk1−1

. . .
...

SkP−1
TkP−1

bkP−1

. . .
...

SN−1 TN−1 bN−1

Ba Bb bN


• Divide the BABD system into P slices with roughly the same number of block

rows and assign each slice to one processor.

• Find Q0 orthogonal such that[
Tkp

Skp+1

]
= Q0

[
Ukp

O

]
.

• Apply QT
0 to update the system.

• Find Q1 orthogonal such that[
W kp+1

Skp+2

]
= Q1

[
Ukp+1

O

]
.

• Apply QT
1 to update the system.

• Repet ultil all rows have been processed.

4



Local Factorization [Wright 1992]

[
QT

0

I(k−2)n

]



Skp Tkp bkp

Skp+1 Tkp+1 bkp+1

Skp+2 Tkp+2 bkp+2

. . .
...

Skp+1−1 Tkp+1−1 bkp+1−1



• Divide the BABD system into P slices with roughly the same number of block

rows and assign each slice to one processor.

• Find Q0 orthogonal such that[
Tkp

Skp+1

]
= Q0

[
Ukp

O

]
.

• Apply QT
0 to update the system.

• Find Q1 orthogonal such that[
W kp+1

Skp+2

]
= Q1

[
Ukp+1

O

]
.

• Apply QT
1 to update the system.

• Repet ultil all rows have been processed.

4



Local Factorization [Wright 1992]

[
QT

0

I(k−2)n

]



Skp Tkp bkp

Skp+1 Tkp+1 bkp+1

Skp+2 Tkp+2 bkp+2

. . .
...

Skp+1−1 Tkp+1−1 bkp+1−1



• Divide the BABD system into P slices with roughly the same number of block

rows and assign each slice to one processor.

• Find Q0 orthogonal such that[
Tkp

Skp+1

]
= Q0

[
Ukp

O

]
.

• Apply QT
0 to update the system.

• Find Q1 orthogonal such that[
W kp+1

Skp+2

]
= Q1

[
Ukp+1

O

]
.

• Apply QT
1 to update the system.

• Repet ultil all rows have been processed.

4



Local Factorization [Wright 1992]

[
QT

0

I(k−2)n

]


Skp Tkp bkp

Skp+1 Tkp+1 bkp+1

Skp+2 Tkp+2 bkp+2

. . .
...

Skp+1−1 Tkp+1−1 bkp+1−1



• Divide the BABD system into P slices with roughly the same number of block

rows and assign each slice to one processor.

• Find Q0 orthogonal such that[
Tkp

Skp+1

]
= Q0

[
Ukp

O

]
.

• Apply QT
0 to update the system.

• Find Q1 orthogonal such that[
W kp+1

Skp+2

]
= Q1

[
Ukp+1

O

]
.

• Apply QT
1 to update the system.

• Repet ultil all rows have been processed.

4



Local Factorization [Wright 1992]

In QT
1

I(k−3)n





Vkp Ukp Wkp fkp
V kp+1 W kp+1 fkp+1

Skp+2 Tkp+2 bkp+2

. . .
. . .

...

Skp+1−1 Tkp+1−1 bkp+1−1



• Divide the BABD system into P slices with roughly the same number of block

rows and assign each slice to one processor.

• Find Q0 orthogonal such that[
Tkp

Skp+1

]
= Q0

[
Ukp

O

]
.

• Apply QT
0 to update the system.

• Find Q1 orthogonal such that[
W kp+1

Skp+2

]
= Q1

[
Ukp+1

O

]
.

• Apply QT
1 to update the system.

• Repet ultil all rows have been processed.

4



Local Factorization [Wright 1992]

In QT
1

I(k−3)n





Vkp Ukp Wkp fkp
V kp+1 W kp+1 fkp+1

Skp+2 Tkp+2 bkp+2

. . .
. . .

...

Skp+1−1 Tkp+1−1 bkp+1−1



• Divide the BABD system into P slices with roughly the same number of block

rows and assign each slice to one processor.

• Find Q0 orthogonal such that[
Tkp

Skp+1

]
= Q0

[
Ukp

O

]
.

• Apply QT
0 to update the system.

• Find Q1 orthogonal such that[
W kp+1

Skp+2

]
= Q1

[
Ukp+1

O

]
.

• Apply QT
1 to update the system.

• Repet ultil all rows have been processed.

4



Local Factorization [Wright 1992]

In QT
1

I(k−3)n




Vkp Ukp Wkp fkp
V kp+1 W kp+1 fkp+1

Skp+2 Tkp+2 bkp+2

. . .
. . .

...

Skp+1−1 Tkp+1−1 bkp+1−1



• Divide the BABD system into P slices with roughly the same number of block

rows and assign each slice to one processor.

• Find Q0 orthogonal such that[
Tkp

Skp+1

]
= Q0

[
Ukp

O

]
.

• Apply QT
0 to update the system.

• Find Q1 orthogonal such that[
W kp+1

Skp+2

]
= Q1

[
Ukp+1

O

]
.

• Apply QT
1 to update the system.

• Repet ultil all rows have been processed.

4



Local Factorization [Wright 1992]



Vkp Ukp Wkp fkp
Vkp+1 Ukp+1 Wkp+1 fkp+1

V kp+2 W kp+2 fkp+2

. . .
. . .

...

Skp+1−1 Tkp+1−1 bkp+1−1



• Divide the BABD system into P slices with roughly the same number of block

rows and assign each slice to one processor.

• Find Q0 orthogonal such that[
Tkp

Skp+1

]
= Q0

[
Ukp

O

]
.

• Apply QT
0 to update the system.

• Find Q1 orthogonal such that[
W kp+1

Skp+2

]
= Q1

[
Ukp+1

O

]
.

• Apply QT
1 to update the system.

• Repet ultil all rows have been processed.

4



Local Factorization [Wright 1992]



Vkp Ukp Wkp fkp
Vkp+1 Ukp+1 Wkp+1 fkp+1

...
. . .

. . .
...

Vkp+1−2 Ukp+1−2 Wkp+1−2 fkp+1−1

S ′p T ′p b′p



• Divide the BABD system into P slices with roughly the same number of block

rows and assign each slice to one processor.

• Find Q0 orthogonal such that[
Tkp

Skp+1

]
= Q0

[
Ukp

O

]
.

• Apply QT
0 to update the system.

• Find Q1 orthogonal such that[
W kp+1

Skp+2

]
= Q1

[
Ukp+1

O

]
.

• Apply QT
1 to update the system.

• Repet ultil all rows have been processed.

4



Recursive procedure [Wright 1992]

By concatenating all local factorizations, we obtain the equivalent system

QT [A|b] =



V0 U0 W0 f0

...
. . .

...

S ′0 T ′0 b′0

. . .
...

VkP−1
UkP−1

WkP−1
fkP−1

...
. . .

...

S ′P−1 T ′P−1 b′
N′−1

Ba Bb bN


︸ ︷︷ ︸

[Â,b̂]

The solution of Ax = b is decoupled as

1. obtain selected unknowns by solving the BABD system Â of reduced size

(recursion)

2. retrieve the missing unknowns by back-substitution

5



Recursive procedure [Wright 1992]

By concatenating all local factorizations, we obtain the equivalent system

QT [A|b] =



V0 U0 W0 f0

...
. . .

...

S ′0 T ′0 b′0

. . .
...

VkP−1
UkP−1

WkP−1
fkP−1

...
. . .

...

S ′P−1 T ′P−1 b′
N′−1

Ba Bb bN


︸ ︷︷ ︸

[Â,b̂]

The solution of Ax = b is decoupled as

1. obtain selected unknowns by solving the BABD system Â of reduced size

(recursion)

2. retrieve the missing unknowns by back-substitution

5



Recursive procedure [Wright 1992]

By concatenating all local factorizations, we obtain the equivalent system

QT [A|b] =



V0 U0 W0 f0

...
. . .

...

S ′0 T ′0 b′0

. . .
...

VkP−1
UkP−1

WkP−1
fkP−1

...
. . .

...

S ′P−1 T ′P−1 b′
N′−1

Ba Bb bN


︸ ︷︷ ︸

[Â,b̂]

The solution of Ax = b is decoupled as

1. obtain selected unknowns by solving the BABD system Â of reduced size

(recursion)

2. retrieve the missing unknowns by back-substitution

5



Recursive procedure [Wright 1992]

By concatenating all local factorizations, we obtain the equivalent system

QT [A|b] =



V0 U0 W0 f0

...
. . .

...

S ′0 T ′0 b′0

. . .
...

VkP−1
UkP−1

WkP−1
fkP−1

...
. . .

...

S ′P−1 T ′P−1 b′
N′−1

Ba Bb bN


︸ ︷︷ ︸

[Â,b̂]

The solution of Ax = b is decoupled as

1. obtain selected unknowns by solving the BABD system Â of reduced size

(recursion)

2. retrieve the missing unknowns by back-substitution

5



SOF’s workflow

Communication pattern in the case N = 8 (9n unknowns) with P = 4 slices (and

processors) of k = 2 block rows each, showing the dataflow between each block

equation.

e8e7e6e5e4e3e2e1e0

e8e′7e′5e′3e′1

e8e′′7e′′3

e8e′′′7

x8 e′′′3
x0

x8e′′2x4e′′0x0

x8e′6x6e′4x4e′2x2e′0x0

x8x7x6x5x4x3x2x1x0

S
E

Q
U

E
N

T
IA

L

• P ≤ N/2 processors needed

• 2log2P sequential steps

• at each step half of the processors

active at the previous step stays idle

• the amount of parallel work is likely

not enough to fully exploit GPUs’

potential

6



PARAllel Structured Orthogonal
Factorization - PARASOF



Odd/Even SOF

Idea

Decouple odd/even unknowns in a parallel cyclic reduction fashion, i.e. i-th block

row is coupled with both i − 1-th and i + 1-th block row.

Suppose N + 1 is even. For even unknowns, apply SOF to

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb



−→ QeAx = Qeb −→
{
Aexe = be

Uexo = bo − Aoxe

For odd unknowns, apply SOF to

S1 T1

S2 T2

. . .
. . .

S0 T0

Ba Bb



−→ QoAx = Qob −→
{
Aoxo = bo

Uoxe = be − Aexe

These two orthogonal transformation can be performed in parallel and recursively.

7



Odd/Even SOF

Idea

Decouple odd/even unknowns in a parallel cyclic reduction fashion, i.e. i-th block

row is coupled with both i − 1-th and i + 1-th block row.

Suppose N + 1 is even. For even unknowns, apply SOF to

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb



−→ QeAx = Qeb −→
{
Aexe = be

Uexo = bo − Aoxe

For odd unknowns, apply SOF to

S1 T1

S2 T2

. . .
. . .

S0 T0

Ba Bb



−→ QoAx = Qob −→
{
Aoxo = bo

Uoxe = be − Aexe

These two orthogonal transformation can be performed in parallel and recursively.

7



Odd/Even SOF

Idea

Decouple odd/even unknowns in a parallel cyclic reduction fashion, i.e. i-th block

row is coupled with both i − 1-th and i + 1-th block row.

Suppose N + 1 is even. For even unknowns, apply SOF to

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb

 −→ QeAx = Qeb

−→
{
Aexe = be

Uexo = bo − Aoxe

For odd unknowns, apply SOF to

S1 T1

S2 T2

. . .
. . .

S0 T0

Ba Bb



−→ QoAx = Qob −→
{
Aoxo = bo

Uoxe = be − Aexe

These two orthogonal transformation can be performed in parallel and recursively.

7



Odd/Even SOF

Idea

Decouple odd/even unknowns in a parallel cyclic reduction fashion, i.e. i-th block

row is coupled with both i − 1-th and i + 1-th block row.

Suppose N + 1 is even. For even unknowns, apply SOF to

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb

 −→ QeAx = Qeb −→
{
Aexe = be

Uexo = bo − Aoxe

For odd unknowns, apply SOF to

S1 T1

S2 T2

. . .
. . .

S0 T0

Ba Bb



−→ QoAx = Qob −→
{
Aoxo = bo

Uoxe = be − Aexe

These two orthogonal transformation can be performed in parallel and recursively.

7



Odd/Even SOF

Idea

Decouple odd/even unknowns in a parallel cyclic reduction fashion, i.e. i-th block

row is coupled with both i − 1-th and i + 1-th block row.

Suppose N + 1 is even. For even unknowns, apply SOF to

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb

 −→ QeAx = Qeb −→
{
Aexe = be

Uexo = bo − Aoxe

For odd unknowns, apply SOF to

S1 T1

S2 T2

. . .
. . .

S0 T0

Ba Bb



−→ QoAx = Qob −→
{
Aoxo = bo

Uoxe = be − Aexe

These two orthogonal transformation can be performed in parallel and recursively.

7



Odd/Even SOF

Idea

Decouple odd/even unknowns in a parallel cyclic reduction fashion, i.e. i-th block

row is coupled with both i − 1-th and i + 1-th block row.

Suppose N + 1 is even. For even unknowns, apply SOF to

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb

 −→ QeAx = Qeb −→
{
Aexe = be

Uexo = bo − Aoxe

For odd unknowns, apply SOF to

S1 T1

S2 T2

. . .
. . .

S0 T0

Ba Bb

 −→ QoAx = Qob

−→
{
Aoxo = bo

Uoxe = be − Aexe

These two orthogonal transformation can be performed in parallel and recursively.

7



Odd/Even SOF

Idea

Decouple odd/even unknowns in a parallel cyclic reduction fashion, i.e. i-th block

row is coupled with both i − 1-th and i + 1-th block row.

Suppose N + 1 is even. For even unknowns, apply SOF to

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb

 −→ QeAx = Qeb −→
{
Aexe = be

Uexo = bo − Aoxe

For odd unknowns, apply SOF to

S1 T1

S2 T2

. . .
. . .

S0 T0

Ba Bb

 −→ QoAx = Qob −→
{
Aoxo = bo

Uoxe = be − Aexe

These two orthogonal transformation can be performed in parallel and recursively.

7



Odd/Even SOF

Idea

Decouple odd/even unknowns in a parallel cyclic reduction fashion, i.e. i-th block

row is coupled with both i − 1-th and i + 1-th block row.

Suppose N + 1 is even. For even unknowns, apply SOF to

S0 T0

S1 T1

. . .
. . .

SN−1 TN−1

Ba Bb

 −→ QeAx = Qeb −→
{
Aexe = be

Uexo = bo − Aoxe

For odd unknowns, apply SOF to

S1 T1

S2 T2

. . .
. . .

S0 T0

Ba Bb

 −→ QoAx = Qob −→
{
Aoxo = bo

Uoxe = be − Aexe

These two orthogonal transformation can be performed in parallel and recursively.

7



Odd/Even SOF’s workflow

Communication pattern in the case N = 7 (8n unknowns) with P = 8 slices (and

processors) of k = 2 block rows each, showing the dataflow between each block

equation.

e7e6e5e4e3e2e1e0

eo7ee7eo6ee5eo4ee3eo2ee1

eee7eeo7eoe7eee7eoo6eeo5eoe4eee3

x7x6x5x4x3x2x1x0

S
E

Q
U

E
N

T
IA

L

• P = N processors needed

• roughly log2 N algorithmic steps

• no processor stays idle

• all steps contain the same amount

of work

Observation

In a real application we often have N � P, thus the available parallel work is

somehow serialized in chunks even on massively parallel architectures.

8



Odd/Even SOF’s workflow

Communication pattern in the case N = 7 (8n unknowns) with P = 8 slices (and

processors) of k = 2 block rows each, showing the dataflow between each block

equation.

e7e6e5e4e3e2e1e0

eo7ee7eo6ee5eo4ee3eo2ee1

eee7eeo7eoe7eee7eoo6eeo5eoe4eee3

x7x6x5x4x3x2x1x0

S
E

Q
U

E
N

T
IA

L

• P = N processors needed

• roughly log2 N algorithmic steps

• no processor stays idle

• all steps contain the same amount

of work

Observation

In a real application we often have N � P, thus the available parallel work is

somehow serialized in chunks even on massively parallel architectures.

8



PARASOF

1. Apply one step of SOF’s forward reduction phase of obtain a reduced P × P

block system.

2. Solve the reduced intermediate system with the odd/even SOF algorithm

3. Retrieve the missing unknowns using one step of backward substitution

e9e8e7e6e5e4e3e2e1e0

e9e′8e′5e′2

eo9ee9e′o8e′e5

x9e′8e′7x6e′5e′4x3e′2e′1x0

x9x8

x7

x6x5

x4

x3x2

x1

x0

S
E

Q
U

E
N

T
IA

L

• arbitrary number of processors P

• log2P + 2 sequential steps

• no idle processors

• minimal amount of serialized work

9



PARASOF

1. Apply one step of SOF’s forward reduction phase of obtain a reduced P × P

block system.

2. Solve the reduced intermediate system with the odd/even SOF algorithm

3. Retrieve the missing unknowns using one step of backward substitution

e9e8e7e6e5e4e3e2e1e0

e9e′8e′5e′2

eo9ee9e′o8e′e5

x9e′8e′7x6e′5e′4x3e′2e′1x0

x9x8

x7

x6x5

x4

x3x2

x1

x0

S
E

Q
U

E
N

T
IA

L

• arbitrary number of processors P

• log2P + 2 sequential steps

• no idle processors

• minimal amount of serialized work

9



PARASOF

1. Apply one step of SOF’s forward reduction phase of obtain a reduced P × P

block system.

2. Solve the reduced intermediate system with the odd/even SOF algorithm

3. Retrieve the missing unknowns using one step of backward substitution

e9e8e7e6e5e4e3e2e1e0

e9e′8e′5e′2

eo9ee9e′o8e′e5

x9e′8e′7x6e′5e′4x3e′2e′1x0

x9x8

x7

x6x5

x4

x3x2

x1

x0

S
E

Q
U

E
N

T
IA

L

• arbitrary number of processors P

• log2P + 2 sequential steps

• no idle processors

• minimal amount of serialized work

9



PARASOF

1. Apply one step of SOF’s forward reduction phase of obtain a reduced P × P

block system.

2. Solve the reduced intermediate system with the odd/even SOF algorithm

3. Retrieve the missing unknowns using one step of backward substitution

e9e8e7e6e5e4e3e2e1e0

e9e′8e′5e′2

eo9ee9e′o8e′e5

x9e′8e′7x6e′5e′4x3e′2e′1x0

x9x8

x7

x6x5

x4

x3x2

x1

x0

S
E

Q
U

E
N

T
IA

L

• arbitrary number of processors P

• log2P + 2 sequential steps

• no idle processors

• minimal amount of serialized work

9



Numerical Experiments



Theoretical speed-ups

• Local QR is computed with Householder reflectors

• P = number of processors

• Pc = number of coarse grained processors (Streaming Multiprocessors)

• Pf = number of fine grained processors (warps)

Setting: P = 16, Pc = 10, Pf = 32.

2 4 6 8 10 12 14 16
n

1x

5x

10x

15x

20x

25x

30x

Sp
ee

d-
up

(a) Theoretical speed-up (PARASOF vs SOF),

N = 211.

6 8 10 12 14
log2(N)

1x

5x

10x

15x

20x

25x

30x

Sp
ee

d-
up

(b) Theoretical speed-up (PARASOF vs SOF),

n = 16.

Figure 1: Theoretical speedup in function of the size n (left) and the number N (right) of internal

blocks.

10



Theoretical speed-ups

• Local QR is computed with Householder reflectors

• P = number of processors

• Pc = number of coarse grained processors (Streaming Multiprocessors)

• Pf = number of fine grained processors (warps)

Algorithm # steps Factorization Memory

SOF 2 log2(P) 46
3
n3
(

N
P

+ L− 1
)

4n2 (N + P L) + n(N + P)

PARASOF log2(Pc ) 42
3

n3

Pf
Lr + 46

3
n3

Pf

(
N
Pc

)
2n2Pc + 4n2 (N + Pc ) + n(N + Pc )

Table 1: Complexity comparison of algorithms in terms of algorithmic steps and operation count.

Setting: P = 16, Pc = 10, Pf = 32.

2 4 6 8 10 12 14 16
n

1x

5x

10x

15x

20x

25x

30x

Sp
ee

d-
up

(a) Theoretical speed-up (PARASOF vs SOF),

N = 211.

6 8 10 12 14
log2(N)

1x

5x

10x

15x

20x

25x

30x

Sp
ee

d-
up

(b) Theoretical speed-up (PARASOF vs SOF),

n = 16.

Figure 1: Theoretical speedup in function of the size n (left) and the number N (right) of internal

blocks.

10



Theoretical speed-ups

• Local QR is computed with Householder reflectors

• P = number of processors

• Pc = number of coarse grained processors (Streaming Multiprocessors)

• Pf = number of fine grained processors (warps)

Setting: P = 16, Pc = 10, Pf = 32.

2 4 6 8 10 12 14 16
n

1x

5x

10x

15x

20x

25x

30x

Sp
ee

d-
up

(a) Theoretical speed-up (PARASOF vs SOF),

N = 211.

6 8 10 12 14
log2(N)

1x

5x

10x

15x

20x

25x

30x

Sp
ee

d-
up

(b) Theoretical speed-up (PARASOF vs SOF),

n = 16.

Figure 1: Theoretical speedup in function of the size n (left) and the number N (right) of internal

blocks.

10



Experiments’ setting

• C/CUDA language

• randomly generated linear systems (dense blocks, worst case)

• umfpack (Davis 2004), a well optimized CPU multifrontal LU factorization

We test its performance by running the algorithm on two different workstations:

1. dellcuda1, with two 1.80GHz Intel(R) Xeon(R) CPU E5-2630L v3 CPU and a

Nvidia TITAN Xp graphic card;

2. gpu01, with a 3.50GHz Intel(R) Core(TM) i7-2700K CPU and a Nvidia GeForce

GTX1060 graphic card.

11



Experiments’ setting

• C/CUDA language

• randomly generated linear systems (dense blocks, worst case)

• umfpack (Davis 2004), a well optimized CPU multifrontal LU factorization

We test its performance by running the algorithm on two different workstations:

1. dellcuda1, with two 1.80GHz Intel(R) Xeon(R) CPU E5-2630L v3 CPU and a

Nvidia TITAN Xp graphic card;

2. gpu01, with a 3.50GHz Intel(R) Core(TM) i7-2700K CPU and a Nvidia GeForce

GTX1060 graphic card.

11



Speed-up on gpu01

• Nr = size of reduced system that is solved with odd/even SOF.

2 4 6 8 10 12 14 16
n

1x

2x

3x

4x

5x

Sp
ee

d-
up

(a) Speed-up , N = 211 and Nr = 63.

7 8 9 10 11 12 13 14 15
log2(N)

1x

5x

10x

15x

20x

25x

30x

Sp
ee

d-
up

(b) Speed-up, n = 16 and Nr = 63.

Figure 2: PARASOF speed-up over spsolve on gpu01.

12



Speed-up on dellcuda1

2 4 6 8 10 12 14 16
n

1x

2x

4x

6x

8x

Sp
ee

d-
up

(a) Speed-up , N = 211 and Nr = 63

6 8 10 12 14
log2(N)

1x

5x

10x

15x

20x

25x

30x

Sp
ee

d-
up

(b) Speed-up, n = 16 and Nr = 63.

2 4 6 8 10 12 14 16
n

1x
2x

4x

6x

8x

10x

Sp
ee

d-
up

(c) Speed-up , N = 211 and Nr = 127.

8 9 10 11 12 13 14 15
log2(N)

1x

10x

20x

30x

40x

50x

60x

Sp
ee

d-
up

(d) Speed-up, n = 16 and Nr = 127.

Figure 3: PARASOF speed-up over spsolve on dellcuda1.

13



Conclusions and Future work



Fast Givens Transformations on GPUs

Batched routines computes multiple and independent linear algebra operations on

small-sized matrices and/or vectors in a single routine call.

• Batched Givens QR can improve speed-ups exploiting sparsity of block rows

whenever possible

14



Conclusions

• New stable parallel algorithm for solving of BABD systems has been proposed

• Same technique can be extended to the parallel solution of ABD systems with

minor changes

• Speed-up up to 60x can be achieved in comparison to optimized CPU methods

• Timings are architecture dependent

• In particular, further optimization can be achieved with Givens rotations

15



Thank you for your attention!

15



References i

References

Amodio, P. et al. (2000). “Almost block diagonal linear systems: sequential and

parallel solution techniques, and applications”. In: Numerical Linear Algebra with

Applications 7.5, pp. 275–317.

Davis, T. A. (2004). “Algorithm 832: UMFPACK V4.3—an Unsymmetric-pattern

Multifrontal Method”. In: ACM Trans. Math. Softw. 30.2, pp. 196–199. issn:

0098-3500. doi: 10.1145/992200.992206. url:

http://doi.acm.org/10.1145/992200.992206.

R.W. Hockney, C. J. (1983). Parallel Computers.

Wright, S. J. (1992). “Stable Parallel Algorithms For Two-Point Boundary Value

Problems”. In: SIAM J. Sci. Statist. Comput 13, pp. 742–764.

16

https://doi.org/10.1145/992200.992206
http://doi.acm.org/10.1145/992200.992206


Instability phenomena Wright 1992

Consider the linear BVODE

y ′ =

(
−1/6 1

1 −1/6

)
y +

(
0

1

)
, ya + yb = 0, x ∈ [0, 60].

This problem is well conditioned in the Hadamard sense.

Standard discretization leads the following BABD matrix

A =



I I
−B I

−B I
. . .

. . .

−B I


Using Gaussian elimination with partial pivoting, no interchanges are required, and

A = LU =



I
−B I

−B I
. . .

. . .

−B L̄





I I
I B

. . .
...

I BN−1

Ū


The elements in the last column of U grow exponentially with N.

17



Instability phenomena Wright 1992

Consider the linear BVODE

y ′ =

(
−1/6 1

1 −1/6

)
y +

(
0

1

)
, ya + yb = 0, x ∈ [0, 60].

This problem is well conditioned in the Hadamard sense.

Standard discretization leads the following BABD matrix

A =



I I
−B I

−B I
. . .

. . .

−B I



Using Gaussian elimination with partial pivoting, no interchanges are required, and

A = LU =



I
−B I

−B I
. . .

. . .

−B L̄





I I
I B

. . .
...

I BN−1

Ū


The elements in the last column of U grow exponentially with N.

17



Instability phenomena Wright 1992

Consider the linear BVODE

y ′ =

(
−1/6 1

1 −1/6

)
y +

(
0

1

)
, ya + yb = 0, x ∈ [0, 60].

This problem is well conditioned in the Hadamard sense.

Standard discretization leads the following BABD matrix

A =



I I
−B I

−B I
. . .

. . .

−B I


Using Gaussian elimination with partial pivoting, no interchanges are required, and

A = LU =



I
−B I

−B I
. . .

. . .

−B L̄





I I
I B

. . .
...

I BN−1

Ū


The elements in the last column of U grow exponentially with N.

17


	Introduction
	Structured Orthogonal Factorization - SOF
	PARAllel Structured Orthogonal Factorization - PARASOF
	Numerical Experiments
	Conclusions and Future work

