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Sparse Iterative Linear Solvers

Linear Solvers on Sparse Matrices are the base
of Simulations in Science, Engineering.
Solve for x in Ax = b.
Preconditioning improves the convergence of
linear solver since it reduces the condition
number of the matrix.
Typical kernel in Parallel Iterative Solvers:

Preconditioning step (line 4)
Sparse matrix vector multiplication (line 12)
Global dot product (line 8, 12)
Axpy operation (line 10, 14, 15)

Preconditioning Step is most challenging kernel
for scalability in parallel iterative solvers.

Algorithm 1 Preconditioned Conjugate Gradient (PCG) Algorithm

1: procedure PCG(A, b, x (0), tol , kmax ,M)
2: r (0) = f − Au(0), k = 1 . Initialization
3: while (k < kmax and ‖r (k−1)‖ > tol) do
4: z (k−1) = M−1r (k−1) . Preconditioning
5: if k = 1 then
6: p(1) = z (0)

7: else
8: βk = (r (k−1))T z(k−1)

(r (k−2))T z(k−2)

9:
10: p(k) = z (k−1) + βkp(k−1) . Search direction
11: end if
12: αk = (r (k−1))T z(k−1)

(p(k))T Ap(k)

13:
14: x (k) = x (k−1) + αkp(k) . Iterate update
15: r (k) = r (k−1) − αkAp(k) . Residual update
16: k = k + 1
17: end while
18: return x (k−1) . The converged solution
19: end procedure
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Global Address Space Programming Interface (GASPI)

Asynchronous, single sided communication
based standardized API.

Developed keeping scalability in mind.

Applications are developed in machine learning,
big data, seismic imaging based on GASPI.

We are building a scalable linear solver library
based on GASPI to solve complex simulations in
science and engineering.

Abbildung: Ideal scalability until 1024 nodes [4]
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GaspiLS linear solver library

Gaspi based C++ Linear Solver Library
Iterative solvers: (P)CG, BiPCGStab, GMRES
Preconditioners: Jacobi, ILU, ILUM
MPI interoperable
Industry proven in CFD and FEM simulations
OpenSource GPLv3 license library [1]
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My research motivation

Solving for z in Mz = r with Incomplete LU Preconditioner (ILU) consists of two steps:

LDUz = r , solve for y in Ly = r using forward substitution where y = DUz .
DUz = y , solve for z in Uz = D−1y using backward substitution.

LDU Factorization and forward and backward substitution algorithm are serial in nature, thus
difficult to parallelize.
We want to decompose the problem into several tasks and run them in parallel as much as possible.
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Incomplete LU (ILU) Preconditioner

The iterative methods frequently incorporate incomplete LU (ILU) preconditioner because of its
robustness, accuracy, and usability as a black-box preconditioner.
The ILU Preconditioner is serial in nature.
To introduce parallelism, Crout version of ILU is used as a preconditioner.
Crout ILU may control the growth of error in the preconditioning operation by setting a bound on
the inverse of the triangular (L and U) factors.
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Crout ILU Algorithm

Until step (k − 1), LDU factorization of A(1 : k − 1, 1 : k − 1) is computed.
At kth step, row z( A(k, k : n)) and column w( A(k + 1 : n, k)) is updated.
U is stored in CSR and L is stored in CSC format.

Algorithm 2 Crout version of ILU Algorithm: ILUC

1: for k = 1 : n do
2: z1:k−1 = 0, zk:n = ak,k:n . Initialize row z
3: for (1 ≤ i ≤ k − 1 and lki 6= 0) do
4: zk:n = zk:n − lki ∗ ui ,k:n . Preparation to update uk,:

5: end do
6: w1:k = 0, wk+1:n = ak+1:n,k . Initialize column z
7: for (1 ≤ i ≤ k − 1 and uik 6= 0) do
8: wk+1:n = wk+1:n − uik ∗ lk+1:n,i . Preparation to update l:,k
9: end do

10: Apply a dropping rule to row z
11: Apply a dropping rule to column w
12: uk,: = z
13: l:,k = w/ukk , lkk = 1
14: end do
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Dropping entries in L and U

Why dropping? : The complete LU decomposition of sparse matrix A introduce additional fill-ins in L
and U . This leads to computation overhead during solution phase.

Dropping strategies in ILU(τ, p) :
τ : Drop an element whose magnitude is less than a tolerance τ .
p : Only keep p largest elements in magnitude in the k-th column of L and kth row of U .

Drop all other elements.
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Inverse Based Pivoting in ILU

Applying Crout ILU on A, we obtain A = LDU + R . The matrix R is generated due to dropping.
Preconditioning matrix: L−1AU−1 = D + L−1RU−1.
Error matrix L−1RU−1 grows when ‖L−1‖ and ‖U−1‖ grows.
If ‖L−1‖ ≤ κ perform factorization, else move the pivot akk at the end of matrix.

( Courtesy: figure from [3]) José Ignacio Aliaga, Exploiting task and data parallelism in ILUPACK’s
preconditioned CG solver on NUMA architectures and many-core accelerators
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Schur Complement Matrix Computation

To bound the inverse norm, the matrix is not completely factorized at this stage.
Instead, Partial Crout ILU factorization of A such that B = LBDBUB.

A =
B E
F C

 =
LB 0
LE I


DB 0

0 SC


UB UF

0 I

 + E

Schur complment matrix SC is computed that will be factorized at next level.

SC ≈ C − LEDBUF .
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Multilevel Crout ILU Method

Algorithm 3 Multilevel Crout Algorithm

1: procedure MultiLevel_Crout_ILU(A)
2: if (coarsest level) then
3: Decompose Crout LDU factorization.
4: return
5: else
6: Compute Crout LDU formulation of submatrix nB × nB of A
7: Compute the Schur complement matrix SC
8: Call MULTILEVEL_CROUT_ILU (SC).
9: return

10: end if
11: end procedure

© Fraunhofer ITWM

11th July 2019 13



Data Structures to Implement the Sparse Vector in
Crout ILU Preconditioner

Iterative Solvers for Sparse Linear Systems

Crout Incomplete LU (ILU) factorization of A
Serial Crout ILU Method
Multilevel Crout ILU Method
Parallelization of Crout ILU Method

Sparse Vector Update in Serial Crout ILU Factorization

© Fraunhofer ITWM

11th July 2019 14



How to extract Parallelism in Crout LU decomposition

Sparse matrix A can be represented in an undirected graph GA.
Nested Dissection of GA leads to a binary task tree.

(a) The graph GA partitioned using 2 level nested dissection

(b) Task dependency tree corresponding to a)

Abbildung: Extracting task level parallelism from ILU algorithm
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After reordering A→ PT AP =



A11 0 0 0 A15 0 A17
0 A22 0 0 A25 0 A27
0 0 A33 0 0 A36 A37
0 0 0 A44 0 A46 A47

A51 A52 0 0 A55 0 A57
0 0 A63 A64 0 A66 A67

A71 A72 A73 A74 A75 A76 A77



(1)

We can disassemble (1) into following independent matrix structures:

A1 =


A11 A15 A17
A51 A1

55 A1
57

A71 A1
75 A1

77

 , A2 =


A22 A25 A27
A52 A2

55 A2
57

A72 A2
75 A2

77



A3 =


A33 A36 A37
A63 A3

66 A3
67

A73 A3
76 A3

77

 , A4 =


A44 A46 A47
A64 A4

66 A4
67

A74 A4
76 A4

77


(2)

These independent sub-matrices can now be processed in parallel.
Here, we choose A1

55 = A2
55 = 1

2A55, A1
57 = A2

57 = 1
2A57, A3

66 = A4
66 = 1

2A66, A3
67 = A4

67 = 1
2A67,

A1
77 = A2

77 = A3
77 = A4

77 = 1
4A77.
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Parallel Crout ILU factorization at level 1

Abbildung: Parallel Crout ILU factorization [5]

Courtesy: A.F.Martin, Scheduling Strategies for Parallel Sparse Substitution
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Parallel Assembly of Schur Complement Matrices at level 2
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Parallel Crout ILU factorization at level 2
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Assembly of Schur Complement Matrices at level 3
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Crout complete ILU factorization at level 3
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Why Sparse Vector Update matters to us?

Serial Crout ILU factorization takes
place at every node in the task tree.
Therefore its efficient
implementation is crucial for the
parallel factorization.

Sparse vector z and w update is most
time consuming kernel in serial
factorization. Hence its
implementation should be properly
investigated.

Algorithm 4 Crout version of ILU Algorithm: ILUC

1: for k = 1 : n do
2: z1:k−1 = 0, zk:n = ak,k:n . Initialize row z
3: for (1 ≤ i ≤ k − 1 and lki 6= 0) do
4: zk:n = zk:n − lki ∗ ui ,k:n . Preparation to update uk,:

5: end do
6: w1:k = 0, wk+1:n = ak+1:n,k . Initialize column z
7: for (1 ≤ i ≤ k − 1 and uik 6= 0) do
8: wk+1:n = wk+1:n − uik ∗ lk+1:n,i . Preparation to update l:,k
9: end do

10: Apply a dropping rule to row z
11: Apply a dropping rule to column w
12: uk,: = z
13: l:,k = w/ukk , lkk = 1
14: end do
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Handling Sparsity at the Step k

Row vector z is updated using the linear combination of preceding rows of U .

Algorithm 5 Update in sparse vector z
1: for (1 ≤ i ≤ k − 1 and lki 6= 0) do
2: zk:n = zk:n − lki ∗ ui ,k:n

3: end do

We only store the non-zero entries in the sparse vector z .
Features required in sparse Vector z :

Column Index j lookup: Should be O(1) for faster lookups,
Insertion of entry z [j ]: Should be O(1),
Erasing entry z [j ]: Should be O(1),
Sorting z based on the column index j : Avg case O(nlog(n)).
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Different data structures that implements the sparse vector z

We have used std::map, std::unordered_map and a custom implementation to implement sparse
vector z .
Custom Implementation:

(a) Dense (length n) and sparse vector (length N) (b) Insertion at index 2 (c) Deletion at index 1

[2] Fast Implementations of Sparse Sets in C++
https://www.codeproject.com/Articles/859324/Fast-Implementations-of-Sparse-Sets-in-Cplusplus
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Complexity of different data structures

std::map std::unordered_map Custom Implementation
Lookup (find) O(log(n)) O(n) worst case, O(1) avg case O(1)
Insertion O(log(n)) O(n) worst case, O(1) avg case O(1)
Deletion (erase) O(log(n)) O(n) worst case, O(1) avg case O(1)
Sort Already Sorted O(nlogn) O(nlogn)

Tabelle: Time complexity

std::map std::unordered_map Custom Implementation
Space Complexity O(n) O(n) O(N) + O(n)

Tabelle: Space complexity

n: length of the dense vector,
N : length of the sparse vector (n << N).
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Computational cost to generate the sparse vector z

std::map std::unordered_map
Custom
Implementation

Fill sparse vector z with
A(k,k:n) O(C0) O(C0) O(C0)

Lookup and insert nlog(n) + O(n)
O(n2) in worst case,
O(n) in avg case O(n)

Dropping (tau + p ) 2*O(n) + n*log(p) 2*O(n) + n*log(p) 2*O(n) + n*log(p)
Sort based on index Already sorted O(plog(p)) O(plog(p))

Total Computation Cost
nlog(n) + log(p)*n +

O(n)

Worst Case:
O(n2) + log(p)*n + O(n)

Avg Case:
O(log(p)*n) + O(n)

log(p)*n + O(n)

p = constant in general, p = n in case of full fill-in in z .

© Fraunhofer ITWM

11th July 2019 26



Computational Time vs Matrix Size
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Log of Computational Time vs Matrix Size
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Profiler reading: using std::map to store the sparse vector

insert in std::map takes up 65.6 % time of the Crout LU factorization.
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Profiler reading: using std::unordered_map to store the sparse vector

find in std::unorderd_map takes up 35.6 % time of the Crout LU factorization.
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Profiler reading: Custom implementation for the sparse vector

insert in the custom implementation takes up only 18.4 % time of the Crout LU factorization.

© Fraunhofer ITWM

11th July 2019 31



Summary and future outlook

Understood Multilevel Parallel Crout ILU factorization algorithm of matrix A.

Insert in Sparse vector is the bottleneck in Serial implementation.

Optimized using custom implementation of Sparse vector.

Since the serial implementation looks good (reasonably optimal), we will start parallel implentation.

© Fraunhofer ITWM

11th July 2019 32



Questions/Discussion?
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