
High bandwidth memory architectures for very sparse
systems

Frank Hülsemann1

1EDF R&D

SparseDays 2019, CERFACS
July 2019

HBM for sparse systems July 11th 2019 1 / 18



Overview

→ Context: Computational PDEs at EDF
→ The roofline model
→ Example of a HMB architecture: NEC SX-Aurora Tsubasa
→ Computational intensity at the example of the Conjugate Gradient
→ Performance predictions and results (mono-core)
→ Outlook

HBM for sparse systems July 11th 2019 2 / 18



Computational PDEs at EDF

EDF is an energy utility company
→ with a certain number of computational applications (PDEs or not);

→ with more than 30 years of experience in the development of in-house codes;

→ that is represented in the Top500 since Nov. 2006 (EDF or EDF R&D).

HBM for sparse systems July 11th 2019 3 / 18



Common platform for computational PDEs: Salome

EDF R&D develops and distributes several specializations of the Salome
platform for different application areas:
Salome-Meca Salome_CFD Salome-Hydro

For more information, see
https://www.salome-platform.org/contributions/edf_products.

HBM for sparse systems July 11th 2019 4 / 18

https://www.salome-platform.org/contributions/edf_products


Computational PDEs at EDF in general

Computational PDEs:
→ Discretizations:

(classical) FE, FV
more recently: robust discretizations, such as Compatible Discrete
Operators (CDO), Hybrid High Order methods (HHO)
in general with compact support

→ Meshes:

in general unstructured, with notable exceptions
from tens of thousands to more than a billion cells (CFD in 2017)

→ Types of computations:

rarely one-shot
general case: time-dependent, non-linear, parametric

Single core performance matters!

HBM for sparse systems July 11th 2019 5 / 18



. . . and in CFD in particular

Discretizations with compact support on unstructured meshes
⇒ sparse matrices without any particular pattern.

→ co-localized FV: Entries per row = number of faces + 1 (per variable, modulo
boundary conditions)

on tetrahedra: 5 non-zeros per row
on hexahedra: 7 non-zeros per row

→ CDO face-based or HHO(k=0) after static condensation: As many entries per row
as faces in the two cells that share a given face.

on tetrahedra: 7
on hexahedra: 11

In other words: In general, very sparse unstructured systems.

HBM for sparse systems July 11th 2019 6 / 18



The importance of the memory bandwidth

The roofline model of Williams, Waterman and Patterson (2009) states that

P [F/s] = min(comp. intensity [F/B] * bandwidth [B/s], peak perf. [F/s])

is an upper bound for the (floating-point) performance of an algorithm. Here,

computational intensity [F/B] = number of arithmetic operations [F]
number of bytes read or written [B]

On a given architecture, the performance that an algorithm can obtain is limited
by the peak performance, if

comp. intensity [F/B] ≥ peak perf. [F/s]
bandwidth [B/s].

Otherwise, the performance of the algorithm is limited by the available memory
bandwidth.

HBM for sparse systems July 11th 2019 7 / 18



Peak performance and memory bandwidth: Examples

Intel Xeon Gold 6140 (2.3 GHz, AVX-512, dual socket, 18 cores per socket):
peak performance per core: 73.6 GF/s (according to Top500)
memory bandwidth for 1 core: 12.6 GB/s (Stream benchmark)
max. memory bandwidth 163 GB/s (Stream benchmark, 36c)

⇒ On one such core, an algorithm with a computational intensity less than 5.8 [F/B] is
limited by the memory bandwidth.

NEC SX-Aurora Tsubasa 10B (1.4 GHz, 8 cores):
peak performance per core: 268.8 GF/s (according to NEC)
memory bandwidth for 1 core: 350 GB/s (Stream benchmark)
max. memory bandwidth 977 GB/s (Stream benchmark, 4c)

On this machine, if comp. intensity < 0.77 [F/B], then memory bandwidth limited.

HBM for sparse systems July 11th 2019 8 / 18



NEC SX-Aurora Tsubasa

NEC SX-Aurora Tsubasa 10B:

→ Vector computer on a PCI-Express card

→ 8 vector cores, 48 GB HBM2 memory, 16MB cache per card

→ Std. execution model: Whole program runs on the vector card.

→ Big/little approach: Each vector core (big) contains a scalar CPU (little).

→ Vector length: 256 (double precision values, 64bit)

→ Programming environment: vectorizing compilers for Fortran, C, C++; MPI,
OpenMP

→ Cross compilation on x86 host.

HBM for sparse systems July 11th 2019 9 / 18



The conjugate gradient as solver example

Only few building blocks necessary (α ∈ R, x , y ∈ RN , A ∈ RN×N):

daxpy y ← αx + y
inner product < x , y >=

∑
i xiyi

vector norm ‖x‖ = √< x , x >
daypx y ← αy + x
spmv y = Ax

Note: Non-trivial preconditioners are a topic for the future.

HBM for sparse systems July 11th 2019 10 / 18



Computational intensity of the CG building blocks

Setting: 8B double, 4B int, Ellpack storage, E=7 entries per row

Operation comp. intensity [F/B]
daxpy 2/24 = 1/12
inner product 1/16 ≤ ci ≤ 1/8 (depends on the accumulation)
vector norm ?? (depends on the square root algorithm)
daypx 2/24 = 1/12
spmv (2E-1)/21E = 13/148 ≈ 0.088

All operations are memory bandwidth limited on both architectures
(NEC: ci< 0.77, Intel: ci < 5.8 [F/B]).

HBM for sparse systems July 11th 2019 11 / 18



Performance: predicted . . .

Setting: 8B double, 4B int, Ellpack storage, E=7 entries per row, NEC SX-Aurora T10B

Operation comp. intensity performance [GF/s]
[F/B] predicted

daxpy 1/12 (1/12)*350 = 29,2
inner product 1/16 ≤ ci ≤ 1/8 350/16 = 21,9, 350/8= 43,8
vector norm ?? ??
daypx 1/12 29,2
spmv 13/148 30,7

HBM for sparse systems July 11th 2019 12 / 18



Performance: . . . and measured

Setting: 8B double, 4B int, Ellpack storage, E=7 entries per row, NEC SX-Aurora
T10B, N=309248

Operation comp. intensity performance [GF/s]
[F/B] predicted measured

daxpy 1/12 29,2 28,9
inner product 1/16 ≤ ci ≤ 1/8 21,9 - 43,8 34,8
vector norm ?? ?? 59,4
daypx 1/12 29,2 30,1
spmv 13/148 30,7 17,3

HBM for sparse systems July 11th 2019 13 / 18



Performance: Some remarks

→ Getting optimal performance on vector operations, including the inner product, is
simple. Just write down the loop and the compiler does the rest.

→ The matrix-vector product does not get close to the upper bound. The best results
were obtained with an in-house version, specialised for 7 non-zeros per row with
redundant computations at the boundary:

→ The general variant runs at ≈ 91% of the performance of the specialised version.

HBM for sparse systems July 11th 2019 14 / 18



Vector friendly matrix storage formats

→ The constructor supplied math library NLC implements two sparse matrix formats:
Ellpack and MJAD. Neither of them gets significantly closer to the roofline bound.

→ Despite the additional computations, the specialised variant is faster (in wall clock
time) than the NLC Ellpack routines on our test cases.

Ellpack:
→ For vertex-based discretization schemes on unstructured meshes, plain vanilla

Ellpack is not the most appropriate choice.

→ But: Face-based schemes like CDO yield (almost) constant row length on
unstructured, single-element type meshes.

→ On multi-element meshes, one could consider a sliced Ellpack format, or the
constructor supplied MJAD.

HBM for sparse systems July 11th 2019 15 / 18



Single core performance

Wall clock ratio for one CG iteration on
→ Intel Xeon Gold 6140, Intel compilers 2019.0.045 and spmv from MKL 2019.0.045
→ NEC SX-Aurora T10B, NEC compilers, in-house Ellpack spmv

Mesh type discr. # rows # nnz r = T (x86)
T (Aurora)

hexahedra FV 32768 223232 8,30
hexahedra FV 2097152 14581760 16,63

tetrahedra CDOfb 124988 857612 15,74
tetrahedra CDOfb 309248 2139392 14,47
prisms CDOfb 326400 2886400 13,98

non-conf. hexahedra CDOfb 592896 13166976 12,20
hexahedra CDOfb 798720 8663040 14,67

The Stream benchmark does not cover the indirect memory acces patterns of a SpMV,
which explains why the difference in the Stream results (x30) is larger than that of the
CG case (≈ x15).

HBM for sparse systems July 11th 2019 16 / 18



To sum up
Conclusion:
→ The Stream benchmark does not test irregular memory acces patterns.
⇒ Additional tests needed to predict performance on new architectures.

→ High bandwidth memory architectures are one way forward to reduce run times for
iterative solvers on sparse matrices.

→ For straightforward access patterns, the results on the NEC SX-Aurora are optimal,
as predicted by the roofline model.

→ In the case of indirect and non-contiguous memory access patterns, the effective
memory bandwidth drops by a factor of 2.

→ Data structures have to be chosen carefully on the vector architecture, otherwise
the performance penalty is significant (factor x30 between different sparse matrix
formats).

→ The software environment (Fortran, C, C++, OpenMP, MPI) is legacy code (and
developer!) friendly, but as with every optimizing compiler, certain constraints
have to be taken into account.

Outlook:
→ Software evolution: MPI between vector card(s) and x86 host to be installed soon.
→ THE open question: Which preconditioners can benefit from such a HBM

architecture?
HBM for sparse systems July 11th 2019 17 / 18



Thank you for your attention!

Questions?

HBM for sparse systems July 11th 2019 18 / 18


	Context

