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o General Problem: From physics to Linear Algebra

p+V-(pv)=0

PO+ pv UV + V(p) = x B+ vAv
Op+v-Vp+pV-v=0

OB =-VxE=Vx(vxB-pnJ)

VxB=1J

V-B=0

—

Ax=Db

Figure: Simulation of a PDE problem leads to the solution of a sparse linear
system Ax = b
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Iterative solution of A*h
Construction and solution of W+ f
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block Cimmino
A block-iterative technique
T. Elfving. Block-iterative methods for consistent and inconsistent linear
equations. Numerische Mathematik, 35(1), 1-12., 1980.

N(A1) = R(AT)™ A1 by
As by

s Ap by

= N(A2) = R(A])™

P
B.C: xT) = 5K 4 >~ A (b — Aix(¥))
i=1
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M. Arioli et al.. Block Lanczos techniques for accelerating the block
Cimmino method, CERFACS TR. PA/92/70, 1992.

N(A1) = R(AT)™ A1 by
© Az by
) . X =
«(0) .
50 Ap by

- N(Az) = R(AT)™

p
B.C: xT) = x(K) 1 >~ A (b — Aix(¥))
i=1
p p
= Hx=Kwith H=> Ppr =Y A’A
i=1 i=1



Convergence and efficiency can be improved...

matrix preprocessing: scaling, permutation, partitioning strategy

stabilized Block CG acceleration (reduced plateaus, BLAS3)



Convergence and efficiency can be improved...

matrix preprocessing: scaling, permutation, partitioning strategy

stabilized Block CG acceleration (reduced plateaus, BLAS3)

..but remains very problem dependent

H SPD with eigenvalues: cosines of principal angles between R(AT),

Unpredictable convergence behaviour (either long plateaus or fast linear
convergence)



Convergence and efficiency can be improved...

matrix preprocessing: scaling, permutation, partitioning strategy

stabilized Block CG acceleration (reduced plateaus, BLAS3)

..but remains very problem dependent

H SPD with eigenvalues: cosines of principal angles between R(AT),

Unpredictable convergence behaviour (either long plateaus or fast linear
convergence)

Proposal

Enforce numerical orthogonality between partitions by adding extra variables and
constraints



Convergence and efficiency can be improved...

matrix preprocessing: scaling, permutation, partitioning strategy

stabilized Block CG acceleration (reduced plateaus, BLAS3)

..but remains very problem dependent

H SPD with eigenvalues: cosines of principal angles between R(AT),

Unpredictable convergence behaviour (either long plateaus or fast linear
convergence)

Proposal

Enforce numerical orthogonality between partitions by adding extra variables and
constraints

= Augmented Block Cimmino Distributed solver (ABCD solver)



augmented block-Cimmino

The augmentation process
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o augmented block-Cimmino

The augmentation process

|. Duff et al.. The augmented block Cimmino distributed method. SIAM Journal
on Scientific Computing, 37(3), A1248-A1269, 2015.

1) Additional variables for orthogonality

Ax=[A F(A)] m =b

A /;ALz ;:;

A2 ALI; /A :ﬁjﬂ;;
As 207
Ad =

Illustrative example

> Vij e {1,...,p}, AAT + F(A)F(A)] =0



o augmented block-Cimmino

The augmentation process

|. Duff et al.. The augmented block Cimmino distributed method. SIAM Journal
on Scientific Computing, 37(3), A1248-A1269, 2015.

2) Ensure same solution with additional constraints
Al_ [A FA][x] b
Y|[*T o 1 |[o] T |o
> Vij e {1,....p}, AAT + F(A)F(A)] =0
> y = 0



e augmented block-Cimmino

The augmentation process

|. Duff et al.. The augmented block Cimmino distributed method. SIAM Journal
on Scientific Computing, 37(3), A1248-A1269, 2015.

3) Orthogonality of additional constraints

Al_ JA FA)][x] _[b
w|*= 1B s |0 |f
» Vij e {1,...,p}, A,-AJ-T+F(A),-F(A)J-T:O
» y =0 and x is the original solution for f = —YAth

» project Y = [0 I] s.t. AWT =0 with:

> Wh=(-P)YT
» with 'D:,PR(AT)



e augmented block-Cimmino

The augmentation process

|. Duff et al.. The augmented block Cimmino distributed method. SIAM Journal
on Scientific Computing, 37(3), A1248-A1269, 2015.

3) Orthogonality of additional constraints

o)== 1s "= [7
> Vij e {1,....p}, AAT + F(A)F(A)] =0

» y =0 and x is the original solution for f = —YAth= 3" /_\?Lb
i=1

P
> project Y = [0 I] s.t. AWT =0 with:
» WT =(1-P)YT

— P
» with P = PR([\T): Z ,PR(A,T)
i=1 '



o augmented block-Cimmino

Implicit Direct Solver

I. Duff et al.. The augmented block Cimmino distributed method. SIAM
Journal on Scientific Computing, 37(3), A1248-A1269, 2015.

N(E) =RATY" N() = R(AT)*
N(A) = R(AT)*
N(w) = RW)" N
S /
® I
) "(ﬁmu) e X0
|10 J— —
‘ - /50
3 N(A) =R(A]) 2
N(A) = R(AT)* N(A) = R(A])*

Figure: block-Cimmino

Figure: augmented block-Cimmino



o augmented block-Cimmino

Implicit Direct Solver

The solution can be directly obtained as :
)
y

which requires only:

Atb+ WTf
= ATb—(I-P)YTSTIYATH

P _
1. the ingredients of BC: Y~ Afb;,
i=1

2. S and not B,

3. to solve a system Sz = f using a direct solver.

ABCD-SOLVER V1.0 available at http://abcd.enseeiht.fr/
Developments granted by the ANR-BARESAFE and ANR-FP3C projects,
supported by the French National Agency for Research



o Augmentation on the interface
Decoupling domains
1) AAT
2) X =
A= (o )=o) > =[] 2= [

B

b ><1
>;{ I

The Augmented block Cimmino solves:



e Augmentation on the interface

Decoupling domains

The Augmented block Cimmino solves: ; ')4< )ET:;(B
i (g, ") 0= - [ ]
1) Normal equations: due to enforced orthogonality
AAT F(A)1] 15
AATX = B e R A N I [g] (1)

F(A)! ... F(A) Iy y



e Augmentation on the interface

Decoupling domains

The Augmented block Cimmino solves: ; )A< )ET:;(B
< (A F(A) bl v [x] ¢ [x
A= (o, )=o) X =[] %= []]
1) Normal equations: due to enforced orthogonality
AAT F(A)1| [x
AATX =B «— : : :m
APA_pT F(A)P X
F(A, ... F(A)) Iy y

2) S = Schur: condensation on the interface between domains

S=Y(I-P)Y =1~ Zp: F(A) (AAT) T F(A);

(1)

)



e A problem with the size of the augmentation

Example on a standard 3D PDE problem

Consider a 3D Poisson problem discretized on a cube, with standard 7-point finite
difference stencil. Let the cube be meshed with on each direction a number of points of
N = 2'2 = 4.096: the total number of nodes is then n = N°> ~ 68719 10°.

Let's partition the 3D cube with /, = 16 blocks in each direction, which gives

p = I3 = 4096(= N) partitions in total.

The interconnection between 1 partition and the rest is approximately equal to the
variables in its 6 faces: M; =6 x f with f = (%)2 the number of variables in 1 face.

We would then end up with an augmentation of size :

p N,
Totalyars ~ Z M; = 6p(/—)
i=1 P

= % = O(N°) ! ®3)



PDE context and multigrid

o Challenging 2D PDE problems

H. Elman et al.. Finite elements and fast iterative solvers: with applications in incompressible
fluid dynamics. Oxford University Press, USA. 2014.

> Test problems on a square domain Qg = (—1,1) x (—1,1)
Convection-Diffusion with recirculating flow

Helmholtz

V2u + k2u = f in Qn with k = 40 —eV2u+ W.Vu =0in Qg

Homogeneous Dirichlet B.C. Dirichlet B.C. u =1 on the right
homogeneous, else

V.... ”
.... « :




0 PDE context and multigrid
Challenging 2D PDE problems

H. Elman et al.. Finite elements and fast iterative solvers: with applications in incompressible
fluid dynamics. Oxford University Press, USA. 2014.

> Test problems on a square domain Qg = (—1,1) x (—1,1)

Helmholtz Convection-Diffusion with recirculating flow
V2u + k2u = f in Qn with k = 40 —eV2u+ W.Vu =0in Qg

Homogeneous Dirichlet B.C. iy u =1 on the right

p=16, m=262121, nz=1823 761 Dirichlet B.C. \ | omogeneous, else

p=16, m=146 689, nz=1023124

> P1 Finite Element discretization using Matlab PDE Toolbox,

T NN




o PDE context and multigrid
Challenging 2D PDE problems

H. Elman et al.. Finite elements and fast iterative solvers: with applications in incompressible
fluid dynamics. Oxford University Press, USA. 2014.

> Test problems on a square domain Qg = (—1,1) x (—1,1)

Helmholtz Convection-Diffusion with recirculating flow
V2u + k2u = f in Qn with k = 40 —eV2u+ W.Vu=0in Qg

Homogeneous Dirichlet B.C. iy u =1 on the right

p=16, m=262121, nz=1823761 Dirichlet B.C. homogeneous, else

p=16, m=146 689, nz=1023124
> P1 Finite Element discretization using Matlab PDE Toolbox,
> Partitioning based on the geometry of the problem.




o PDE context and multigrid

Challenging 2D PDE problems

H. Elman et al.. Finite elements and fast iterative solvers: with applications in incompressible
fluid dynamics. Oxford University Press, USA. 2014.

> Test problems on a square domain Q7 = (—1,1) x (—1,1)
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0 PDE context and multigrid
Challenging 2D PDE problems

H. Elman et al.. Finite elements and fast iterative solvers: with applications in incompressible
fluid dynamics. Oxford University Press, USA. 2014.

> Test problems on a square domain Qg = (—1,1) x (—1,1)

Helmholtz Convection-Diffusion with recirculating flow
V2u + k2u = f in Qn with k = 40 —eV2u+ W.Vu =0in Qg

Homogeneous Dirichlet B.C. iy u =1 on the right

p=16, m=262121, nz=1823 761 Dirichlet B.C. \ | omogeneous, else

p=16, m=146 689, nz=1023124
> P1 Finite Element discretization using Matlab PDE Toolbox,
> Partitioning based on the geometry of the problem.

> Multiple levels of grids with prolongation operators P,/+1 (bilinear interpolation)

Choice of a grid level=control of the size of S
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° PDE context
Challenging 2D PDE problems

» Problem on a L-shaped domain

» Heterogeneous diffusion problem: V?u — k’u=fin Q

> p=75, m=87 424, nz=606 798

> heterogeneity of the patches

Qu _
on "
Qu_ y
1 |on7®
Ou_
On 0 fu_
On :
Qu _

u=cst



- PDE context
Challenging 2D PDE problems

Problem on a L-shaped domain

Heterogeneous diffusion problem: V?u — k?u=fin Q

p=75, m=87 424, nz=606 798

heterogeneity of the patches

vV v v v Y

P1 FE + Multiple levels of grids




o Partial augmentation in ABCD

Relax the orthogonality

Looking for a good augmentation which is small and still opens the angles:
Vij e {1,...,p}, /Z\;/_\J-Tzo

Applying the same algorithm for augmentation on a matrix V of size
m X ne with n. < n: B
A=[A F(AV)]

For example, on a tridiagonal matrix

) A1 Ao (AV)12
A= Ax1 Acn Az —(AV)21  (AV)23
Azo Asz3 —(AV)32



Partial augmentation in ABCD

Coarse augmentation

With the augmentation:

A= [A F(AV)]
Orthogonality within a subrange of A:

(AV)i(AV)] + F(AV);F(AV)] =0



With the augmentation:

A= [A F(AV)]
Orthogonality within a subrange of A:

(AV)i(AV)] + F(AV);F(AV)] =0

Control on the size of the augmentation

Natural choice: V = P the prolongation operator



With the augmentation:

A= [A F(AV)]
Orthogonality within a subrange of A:

(AV)i(AV)] + F(AV);F(AV)] =0

Control on the size of the augmentation

Natural choice: V = P the prolongation operator

Remarks:

finest 141
P= I P,7": aggressive coarsening
|=coarsest



With the augmentation:

A= [A F(AV)]
Orthogonality within a subrange of A:

(AV)i(AV)] + F(AV);F(AV)] =0

Control on the size of the augmentation

Natural choice: V = P the prolongation operator

Remarks:
finest 141
P= I P,7": aggressive coarsening
|=coarsest

1 grid level: F(AP) = F(A) = ABCD



Partial augmentation in ABCD

Control on the size

Table: Size of the augmentation depending on the grid level chosen.

Diffusion Convection-Diffusion Helmholtz
grid levels P F(AP) P F(AP) P F(AP)
1 (ABCD) | 87424 7011 146 689 4608 261121 6150

2 21952 3567 36481 2311 65025 3078
3 5536 1844 9025 1159 16129 1542
4 1408 985 2209 583 3969 774
5 364 551 529 205 961 390




e Coarse-ABCD

The solution process
Additional constraints and same solution
Al_ A F(AP)| |x b
l==[s ")) 17
Vi,j e {1,...,p}, (AP)i(AP); + F(AP);F(AP); =0
» x is the original solution for f = —YA*h
AWT =0 with WT = (I = Pgar)) YT

v

v

v

m — Ath+ WTF
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e Coarse-ABCD

The solution process
Additional constraints and same solution
Al_ A F(AP)| |x b
l==[s ")) 17
» Vi,j e {1,...,p}, (AP)i(AP);+ F(AP);F(AP); =0
» x is the original solution for f = —YA*h
> AWT =0 with WT = (I — Priar)) YT
> m = Atb+ W*F
Okay but... Non-orthogonal partitions !
1. Atb# f Afb;

i=1
= Block-Cimmino iterative method on A with fast linear convergence

P
2 Priany 7 2 Prar)
= How to compute W and f for the W f part ? Block Cimmino again
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= Convection-Diffusion (m=146 689, aug=295)
= Diffusion (m=87 424, aug=551)

0
Helmholtz (m=261 121, aug=390)
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= Diffusion (m=87 424)
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Iterative construction of W and f

e Construction and solution of W™ f

p
Issue: W = Y(/ = Pr(ar)) = Y = Z7 and Pr(ar) # 3- Prar)
i=1 !

Solution 1: ~ _
Z =PruryY " with Y =[I 0] and f = —Yf = —YA"b solution of the system:

AZ =AY and Af = b
Simultaneous stabilized Block-CG on the equivalent systems:

P
HZ = AYT and Af = —b with H=> A7 A

i=1



Iterative construction of W and f

@ Construction and solution of W™ f

p
Issue: W = Y(I —Prary)) =Y — ZT and Prary # > Pr(an
i=1 '

Solution 1: ~ _
Z =PruryY " with Y =[I 0] and f = —Yf = —YA"b solution of the system:

AZ =AY and Af = b
Simultaneous stabilized Block-CG on the equivalent systems:
—_ — Jup— - P - -_
HZ = AYT and Af = —b with H=> A7 A
i=1

— lteratively obtained from Y with CG accelerated block-Cimmino:
Technique interesting for reasonnable size of augmentation and
extra costs of building Z can be compensated with changing right hand sides.




@ Construction and solution of W™ f
Iterative construction of W and f
p
Issue: W = Y(/ = Prary) =Y — ZT and Prary # > Pr(an
i=1 !
Solution 1: ~ _
Z =PruryY " with Y =[I 0] and f = —Yf = —YA"b solution of the system:
AZ =AY" and Af = b

Simultaneous stabilized Block-CG on the equivalent systems:

P
HZ = AYT and Af = —b with H=> A7 A
i=1
— lteratively obtained from Y with CG accelerated block-Cimmino:
Technique interesting for reasonnable size of augmentation and
extra costs of building Z can be compensated with changing right hand sides.

Caution | W approximated: AW T # 0 = W as partition in the global BCG scheme.



Construction and solution of W™ f
Iterative construction of S
p
Issue: W = Y(I — Prary) and Prary # > Pr(an)
i=1 !

Solution 2: (WIP)

Recall: ~ _
WHf=(1-P)YTST'YA™b

Construct a preconditioned CG to solve without constructing S:
DY (I — Prary)Y'z=D"'f
with:
> Prr) = A*A: interior iterations of block-Cimmino,
» D'~ ST =142Z"Z withZ=-A"'C
» Construct D/Z with Multigrid method ?



©

Summary:
Controlled size of the augmentation,

Resulting efficient block-Cimmino method with fast linear
convergence,

Problem of the construction/solution of W remaining and currently
the focus of our research.

A question remain: What is the interpretation in terms of PDE for this
augmented approach 7

Possible extensions:

Preprocessing: scaling of the system, use of ellipsoidal norms,
multi-level augmentation, ...

Column-oriented approach to solve least-square problems,

Algebraic multigrid to build the prolongation operator.
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Size of the augmentation depending on the grid level chosen.

Diffusion Convection-Diffusion Helmholtz
grid levels | Size of C  it. | Size of C it. Size of C it
1 8000 1 5000 1 6000 1
2 3567 28 2311 16 3078 14
3 1844 39 1159 22 1542 25
4 985 70 583 36 774 51
5 551 121 295 54 390 126
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