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Objective

Explore the sensitivity of the spectra of system matrices in weak
constraint four-dimensional variational data assimilation.

We will look at:

I Theory on how the extreme eigenvalues change when new
observations are introduced.

I Eigenvalue bounds.

I Numerical example to illustrate the theory.
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State formulation of weak constraint 4D-Var

J(x0, . . . , xN) =
1

2
||x0 − xb||B−1

+
1

2

N∑
i=0

||yi −Hi (xi )||R−1
i

+
1

2

N−1∑
i=0

||xi+1 −Mi (xi )||Q−1
i+1
,

where xi+1 =Mi (xi ) + ηi+1,
ηi ∼ N(0,Qi ), xi ∈ Rn.
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Incremental weak constraint 4D-Var

Search for the state x ∈ Rn(N+1) incrementally (equivalent to a
Gauss-Newton method):

Update x(k+1) = x(k) + δx(k), where δx minimises quadratic cost function

Jδ(δx(k)) =
1

2
||L(k)δx(k) − b(k)||2D−1 +

1

2
||H(k)δx(k) − d(k)||2R−1 ,

I L(k) and H(k) includes the linearised model and observation
operator, respectively;

I b(k) includes the model errors;

I d(k) includes the discrepancy between the state and the
observations.

δx can be found by solving large-sparse linear systems of equations.

We will consider saddle point and SPD systems.
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3× 3 block saddle point formulation

Fisher and Gürol (2017) propose obtaining δx by solving

A3

 λ
µ
δx

 =

 b
d
0

 ,

where λ and µ are Lagrange multipliers, and

A3 =

 D 0 L
0 R H
LT HT 0

 ∈ R(2(N+1)n+p)×(2(N+1)n+p),

n - number of model variables, N - number of time steps, p - total
number of observations, p << n(N + 1).
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L =


I

−M0 I

. . .
. . .

−MN−1 I


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2× 2 block saddle point formulation

We also propose obtaining δx by solving

A2

(
λ
δx

)
=

(
b

−HTR−1d

)
,

where

A2 =

(
D L
LT −HTR−1H

)
∈ R2(N+1)n×2(N+1)n.
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1× 1 block formulation

δx can also be obtained by solving the standard formulation

A1δx = LTD−1b + HTR−1d,

where
A1 = (LTD−1L + HTR−1H) ∈ R(N+1)n×(N+1)n

is SPD.
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Krylov subspace solvers and eigenvalues

I Krylov solvers require preconditioning for satisfactory performance.
I Previous research on preconditioning 3× 3 block system gave

disappointing results (Fisher and Gurol (2017), Freitag and Green
(2018), Gratton et al (2018)).

I The rate of convergence of Krylov subspace iterative solvers for
symmetric systems depends on the spectrum of the coefficient
matrix.

”Troublesome” spectrum
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I To explore how the observations influence the convergence, we look
into how the spectra of the saddle point and SPD matrices change
when new observations are introduced.
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Change of extreme eigenvalues of A3

A3 =

 D 0 L
0 R H
LT HT 0



Theorem
The smallest and largest negative eigenvalues
of A3 either move away from the origin or are
unchanged when new observations are
introduced. The same holds for the largest
positive eigenvalue, while the smallest positive
eigenvalue approaches the origin or is
unchanged.

eigenvalues

0
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Change of extreme eigenvalues of A2

A2 =

(
D L
LT −HTR−1H

)

Theorem
If the observation errors are uncorrelated, i.e. R
is diagonal, then the smallest and largest
negative eigenvalues of A2 either move away
from the origin or are unchanged when new
observations are added. Contrarily, the smallest
and largest positive eigenvalues of A2 approach
the origin or are unchanged.

eigenvalues

0
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Change of extreme eigenvalues of A1

A1 = LTD−1L + HTR−1H

Theorem
If the observation errors are uncorrelated, i.e. R
is diagonal, then the eigenvalues of A1 move
away from the origin or are unchanged when
new observations are added.

eigenvalues

0
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Eigenvalue bounds with fixed number of observations

I Bounds for eigenvalues of A3 and A1 depend on:
I extreme eigenvalues of D;
I extreme eigenvalues of R;
I largest and smallest nonzero singular values of (LT HT ).

I Bounds for eigenvalues of A2 depend on:
I extreme eigenvalues of D;
I extreme eigenvalues of HTR−1H;
I largest eigenvalue of R;
I extreme singular values of L;
I the smallest nonzero singular value of (LT HT ).
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Numerical example. Assimilation system

I Lorenz 96 model where the evolution of variable X k ,
k ∈ {1, 2, . . . , n}, is governed by the set of n coupled ODEs:

dX k

dt
= −X k−2X k−1 + X k−1X k+1 − X k + F .

I n = 40, F = 8, N = 15, ∆t = 0.025, ∆x = 0.025.

I Bi = Qi = 0.052Cq, where Cq is SOAR with correlation length scale
1.5× 10−2, Ri = 0.12I .

I Direct observations.

I Integrated with 4th order Runge-Kutta scheme.

I Performed with Matlab. Part of the code is written by A. El-Said.
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Spectrum of A3 w.r.t. the number of observations

O.n. Eigenvalues

a) [−2.192,−2.99 × 10−2]

[3.56 × 10−3, 2.195]

f) [−2.408,−9.96 × 10−1]

[9.14 × 10−4, 2.413]

Observation networks:

a) p = 1 at the final time,

b) p = 20, observing every 8th model variable at
every 4th time step,

c) p = 80, observing every 4th model variable at
every 2nd time step,

d) p = 160, observing every 2nd model variable
at every 2nd time step,

e) p = 320, observing every 2nd model variable
at every time step,

f) p = 640, fully observed system.
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MINRES convergence. 3× 3 block system
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Spectrum of A2 w.r.t. the number of observations

O.n. Eigenvalues

a) [−1.0001 × 102,−2.99 × 10−2]

[3.91 × 10−3, 2.195]

f) [−1.0005 × 102,−1.00 × 102]

[9.35 × 10−4, 5.15 × 10−2]

Observation networks:

a) p = 1 at the final time,

b) p = 20, observing every 8th model variable at
every 4th time step,

c) p = 80, observing every 4th model variable at
every 2nd time step,

d) p = 160, observing every 2nd model variable
at every 2nd time step,

e) p = 320, observing every 2nd model variable
at every time step,

f) p = 640, fully observed system.
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MINRES convergence. 2× 2 block system
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Spectrum of A1 w.r.t. the number of observations

Observation networks:

a) p = 1 at the final time,

b) p = 20, observing every 8th model variable at every 4th time step,

c) p = 80, observing every 4th model variable at every 2nd time step,

d) p = 160, observing every 2nd model variable at every 2nd time step,

e) p = 320, observing every 2nd model variable at every time step,

f) p = 640, fully observed system.

O.n. Eigenvalues

a) [3.23 × 10−1, 6.30 × 103]

f) [1.00 × 102, 6.40 × 103]
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CG convergence. 1× 1 block system
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Conclusions

I We have formulated theorems on how the extreme eigenvalues of A3, A2

and A1 change w.r.t. new observations.

I Extreme negative eigenvalues of A3 and A2, largest positive
eigenvalue of A3, and extreme eigenvalues of A1 move away from the
origin. Smallest positive eigenvalue of A3 and extreme positive
eigenvalues of A2 move towards the origin.

I We have determined bounds for the eigenvalues of A3, A2 and A1.

I Numerical experiments illustrate theoretical sensitivity analysis, and show
that the spectral intervals are tight for A3 and A2, but pessimistic for A1.

I The small positive eigenvalues of A2 and A3 can cause convergence issues
when new observations are added.

I Including the information on observations coming from the observation
error covariance matrix R and the linearised observation operator H could
be beneficial for preconditioning.
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