

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVERS AND ITS IMPACT ON SCIENTIFIC COMPUTING

Azzam Haidar | Sr. Engineer - CUDA Math Libraries Harun Bayraktar | Sr. Manager - CUDA Math Libraries Sparse Days, CERFACS Toulouse virtual, Nov 23, 2020

NVIDIA A100 VS NVIDIA TESLA V100

Feature Highlights for Math Libraries

Data Center GPU Name	NVIDIA Tesla V100	
GPU Codename	GV100	
GPU Architecture	NVIDIA Volta	
SMs	80	
GPU Boost Clock	1530 MHz	
Peak FP16 Tensor Core TFLOPS ¹	125	
Peak Bfloat16 Tensor Core TFLOPS ¹	NA	
Peak TF32 Tensor TFLOPS ¹	NA	
Peak FP64 Tensor TFLOPS ¹	NA	
Peak INT8 Tensor TOPS ¹	NA	
Peak FP16 TFLOPS ¹	31.4	
Peak Bfloat16 TFLOPS ¹	NA	
Peak FP32 TFLOPS ¹	15.7	
Peak FP64 TFLOPS ¹	7.8	
Peak INT32 TOPS ¹	15.7	
Memory Interface	4096-bit HBM2	
Memory Size	32 GB / 16 GB	
Memory Data Rate	877.5 MHz DDR	
Memory Bandwidth	900 GB/sec	
L2 Cache Size	6144 KB	
Shared Memory Size / SM 1.Peak rates are based on GPU Boost Clock	Configurable up to 96 KB	

NVIDIA A100 VS NVIDIA TESLA V100

Feature Highlights for Math Libraries

Data Center GPU Name	NVIDIA Tesla V100	
GPU Codename	GV100	
GPU Architecture	NVIDIA Volta	
SMs	80	
GPU Boost Clock	1530 MHz	
Peak FP16 Tensor Core TFLOPS ¹	125	
Peak Bfloat16 Tensor Core TFLOPS ¹	NA	
Peak TF32 Tensor TFLOPS ¹	NA	
Peak FP64 Tensor TFLOPS ¹	NA	
Peak INT8 Tensor TOPS ¹	NA	
Peak FP16 TFLOPS ¹	31.4	
Peak Bfloat16 TFLOPS ¹	NA	
Peak FP32 TFLOPS ¹	15.7	
Peak FP64 TFLOPS ¹	7.8	
Peak INT32 TOPS ¹	15.7	
Memory Interface	4096-bit HBM2	
Memory Size	32 GB / 16 GB	
Memory Data Rate	877.5 MHz DDR	
Memory Bandwidth	900 GB/sec	
L2 Cache Size	6144 KB	
Shared Memory Size / SM 1.Peak rates are based on GPU Boost Clock	Configurable up to 96 KB	

NVIDIA A100 VS NVIDIA TESLA V100

Feature Highlights for Math Libraries

Tensor Cores for:

Mixed-precision Tensor Float 32 (TF32) and Bfloat16

Full double precision (FP64) DMMA

Increased memory bandwidth 1.6 TB/s

Data Center GPU Name	NVIDIA Tesla V100	NVIDIA A100
GPU Codename	GV100	GA100
GPU Architecture	NVIDIA Volta	NVIDIA Ampere
SMs	80	108
GPU Boost Clock	1530 MHz	1410 MHz
Peak FP16 Tensor Core TFLOPS ¹	125	312
Peak Bfloat16 Tensor Core TFLOPS ¹	NA	312
Peak TF32 Tensor TFLOPS ¹	NA	156
Peak FP64 Tensor TFLOPS ¹	NA	19.5
Peak INT8 Tensor TOPS ¹	NA	624
Peak FP16 TFLOPS ¹	31.4	78
Peak Bfloat16 TFLOPS ¹	NA	39
Peak FP32 TFLOPS ¹	15.7	19.5
Peak FP64 TFLOPS ¹	7.8	9.7
Peak INT32 TOPS ¹	15.7	19.5
Memory Interface	4096-bit HBM2	5120-bit HBM2
Memory Size	32 GB / 16 GB	40 GB
Memory Data Rate	877.5 MHz DDR	1215 MHz DDR
Memory Bandwidth	900 GB/sec	1.6 TB/sec
L2 Cache Size	6144 KB	40960 KB
Shared Memory Size / SM 1.Peak rates are based on GPU Boost Clock	Configurable up to 96 KB	Configurable u 164 KB

📀 NVIDIA

Multi-precision numerical methods Solving linear system of equations Ax=b

Multi-precision numerical methods Solving linear system of equations Ax=b

LU factorization used to solve Ax=b is dominated by GEMMs

Multi-precision numerical methods Solving linear system of equations Ax=b

LU factorization used to solve Ax=b is dominated by GEMMs

Multi-precision numerical methods Solving linear system of equations Ax=b

LU factorization used to solve Ax=b is dominated by GEMMs

How about a multi-precision LU then ?

Can it be accelerated using Tensor Cores and still get fp64 accuracy?

Accuracy just after the reduced precision LU factorization

Results obtained using CUDA 11.0 and A100 GPH

💿 NVIDIA

How can we get to FP64 accuracy?

Idea: use reduced precision to compute the expensive flops (LU $O(n^3)$) and then iteratively refine the solution ($O(n^2)$) in order to achieve the FP64 level of accuracy

E. Carson, N. J. Higham, Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, SIAM J. Sci. Comput., 40(2), A817-A847. A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC-18 Dallas, 2018

A.Haidar, H. Bayraktar, S. Tomov, J. Dongarra, N. J. Higham Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems, submitted Royal Society Journal UK 2020.

10

DVIDIA

How can we get to FP64 accuracy?

Idea: use reduced precision to compute the expensive flops (LU $O(n^3)$) and then iteratively refine the solution ($O(n^2)$) in order to achieve the FP64 level of accuracy

🕺 NVIDIA

E. Carson, N. J. Higham, Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, SIAM J. Sci. Comput., 40(2), A817-A847.

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC-18 Dallas, 2018 A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra, N. J. Higham Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems, submitted Royal Society Journal UK 2020.

Performance Behavior, Hilbert matrices, V100

Flops = 2n³/(3 time) meaning twice higher is twice faster

solving Ax = b using FP64 LU

- solving Ax = b using FP16 Tensor
 Cores LU and iterative refinement to achieve FP64 accuracy
- FP16 is about 4X faster within a solution to the FP64 accuracy.

Results obtained using CUDA 11.0 and V100 GPH

12

NVIDIA

Problem generated with Hilbert matrices.

Performance Behavior, Hilbert matrices, V100 v.s. A100

Problem generated with Hilbert matrices.

^{13 📀 🔁} TVIDIA.

Performance Behavior, matrices with SVD clustered distribution, A100

Flops = 2n³/(3 time) meaning twice higher is twice faster

- solving Ax = b using FP64 LU
- solving Ax = b using FP16 Tensor
 Cores LU and iterative refinement to achieve FP64 accuracy
- solving Ax = b using BF16 Tensor
 Cores LU and iterative refinement to achieve FP64 accuracy
- solving Ax = b using TF32 Tensor
 Cores LU and iterative refinement to achieve FP64 accuracy

Results obtained using CUDA 11.0 and A100 GP

DVIDIA

14

Problem generated with a clustered distribution of the singular values $\sigma = [1, \dots, 1, \frac{1}{cond}];$

Matrices from SuiteSparse, A100

TCAIRS NUMERICAL BEHAVIOR

Matrices from SuiteSparse and other problems, A100

- Solving matrices from the SuiteSparse collection corresponding to a wide range of applications in fluid dynamics, structural mechanics, materials science, nuclear energy, oil and gas exploration and others
- TF32 converges faster than both FP16 and BF16 and is able to solve wider range of problems

Results obtained using CUDA 11.0 and A100 GPU.

16 📀 💽 16

TCAIRS PERFORMANCE BEHAVIOR

Matrices from SuiteSparse and other problems, A100

	Performance	Fallback cases	Notes
FP32	1x	1	Hard case
TF32	2x	2	Hard case
FP16 scaled	2x	3	Scaling fixes many cases
BF16	2x	6	Loss of precision is an issue for several cases

- TF32 converges faster than both FP16 and BF16 and is able to solve wider range of problems
- In terms of performance TF32 provide time to solution close or better than both BF16 and FP16
- In summary, TF32 can be considered the most robust and the fastest variant

Results obtained using CUDA 11.0 and A100 GPU.

Tensor Core Accelerated Iterative Refinement Solver (TCAIRS)

Mixed Precision Solvers are gaining a lot of attention for their power to provide a solution up to 4X-5X faster and for their energy efficiency.

