
TENSOR CORE ACCELERATED
ITERATIVE REFINEMENT SOLVERS AND
ITS IMPACT ON SCIENTIFIC COMPUTING
Azzam Haidar | Sr. Engineer – CUDA Math Libraries

Harun Bayraktar | Sr. Manager – CUDA Math Libraries

Sparse Days, CERFACS Toulouse virtual, Nov 23, 2020

2

NVIDIA A100 VS NVIDIA TESLA V100

Data Center GPU Name NVIDIA Tesla V100 NVIDIA A100

GPU Codename GV100 GA100
GPU Architecture NVIDIA Volta NVIDIA Ampere
SMs 80 108
GPU Boost Clock 1530 MHz 1410 MHz
Peak FP16 Tensor Core TFLOPS1 125 312
Peak Bfloat16 Tensor Core
TFLOPS1

NA 312

Peak TF32 Tensor TFLOPS1 NA 156
Peak FP64 Tensor TFLOPS1 NA 19.5
Peak INT8 Tensor TOPS1 NA 624
Peak FP16 TFLOPS1 31.4 78
Peak Bfloat16 TFLOPS1 NA 39
Peak FP32 TFLOPS1 15.7 19.5
Peak FP64 TFLOPS1 7.8 9.7
Peak INT32 TOPS1 15.7 19.5
Memory Interface 4096-bit HBM2 5120-bit HBM2
Memory Size 32 GB / 16 GB 40 GB
Memory Data Rate 877.5 MHz DDR 1215 MHz DDR
Memory Bandwidth 900 GB/sec 1.6 TB/sec
L2 Cache Size 6144 KB 40960 KB
Shared Memory Size / SM Configurable up to

96 KB
Configurable up to
164 KB1.Peak rates are based on GPU Boost Clock

Feature Highlights for Math Libraries

3

NVIDIA A100 VS NVIDIA TESLA V100

Data Center GPU Name NVIDIA Tesla V100 NVIDIA A100

GPU Codename GV100 GA100
GPU Architecture NVIDIA Volta NVIDIA Ampere
SMs 80 108
GPU Boost Clock 1530 MHz 1410 MHz
Peak FP16 Tensor Core TFLOPS1 125 312
Peak Bfloat16 Tensor Core
TFLOPS1

NA 312

Peak TF32 Tensor TFLOPS1 NA 156
Peak FP64 Tensor TFLOPS1 NA 19.5
Peak INT8 Tensor TOPS1 NA 624
Peak FP16 TFLOPS1 31.4 78
Peak Bfloat16 TFLOPS1 NA 39
Peak FP32 TFLOPS1 15.7 19.5
Peak FP64 TFLOPS1 7.8 9.7
Peak INT32 TOPS1 15.7 19.5
Memory Interface 4096-bit HBM2 5120-bit HBM2
Memory Size 32 GB / 16 GB 40 GB
Memory Data Rate 877.5 MHz DDR 1215 MHz DDR
Memory Bandwidth 900 GB/sec 1.6 TB/sec
L2 Cache Size 6144 KB 40960 KB
Shared Memory Size / SM Configurable up to

96 KB
Configurable up to
164 KB1.Peak rates are based on GPU Boost Clock

Output
FP16, FP32

FP16/FP32
input

no precision
loss product

FP32
accumulation

FP32

A

B

x +

Feature Highlights for Math Libraries

4

NVIDIA A100 VS NVIDIA TESLA V100
Feature Highlights for Math Libraries

Data Center GPU Name NVIDIA Tesla V100 NVIDIA A100
GPU Codename GV100 GA100
GPU Architecture NVIDIA Volta NVIDIA Ampere
SMs 80 108
GPU Boost Clock 1530 MHz 1410 MHz
Peak FP16 Tensor Core TFLOPS1 125 312
Peak Bfloat16 Tensor Core
TFLOPS1

NA 312

Peak TF32 Tensor TFLOPS1 NA 156
Peak FP64 Tensor TFLOPS1 NA 19.5
Peak INT8 Tensor TOPS1 NA 624
Peak FP16 TFLOPS1 31.4 78
Peak Bfloat16 TFLOPS1 NA 39
Peak FP32 TFLOPS1 15.7 19.5
Peak FP64 TFLOPS1 7.8 9.7
Peak INT32 TOPS1 15.7 19.5
Memory Interface 4096-bit HBM2 5120-bit HBM2
Memory Size 32 GB / 16 GB 40 GB
Memory Data Rate 877.5 MHz DDR 1215 MHz DDR
Memory Bandwidth 900 GB/sec 1.6 TB/sec
L2 Cache Size 6144 KB 40960 KB
Shared Memory Size / SM Configurable up to

96 KB
Configurable up to
164 KB1.Peak rates are based on GPU Boost Clock

Tensor Cores for:

Mixed-precision Tensor Float 32 (TF32) and Bfloat16

Full double precision (FP64) DMMA

Increased memory bandwidth 1.6 TB/s

5

TENSOR CORE ACCELERATED LIBRARIES

LU factorization is used to solve a
linear system Ax=b

A x = b

LUx = b

Ly = b

then
Ux = y

A x b

U
L x b

L y b

U x y

Multi-precision numerical methods
Solving linear system of equations Ax=b

6

LU factorization used to solve Ax=b is dominated by GEMMs

TENSOR CORE ACCELERATED LIBRARIES
Multi-precision numerical methods

Solving linear system of equations Ax=b

7

LU factorization used to solve Ax=b is dominated by GEMMs

TENSOR CORE ACCELERATED LIBRARIES
Multi-precision numerical methods

Solving linear system of equations Ax=b

9.7 19.5 19.5

156

312 312

0

50

100

150

200

250

300

350

FP64

FP64-TC

FP32

TF32-TC

FP16-TC

BF16-TC

GA100 Tflops

8

LU factorization used to solve Ax=b is dominated by GEMMs

TENSOR CORE ACCELERATED LIBRARIES

9.7 19.5 19.5

156

312 312

0

50

100

150

200

250

300

350

FP64

FP64-TC

FP32

TF32-TC

FP16-TC

BF16-TC

GA100 Tflops

How about a multi-precision LU then ?

Can it be accelerated using Tensor Cores
and still get fp64 accuracy?

Multi-precision numerical methods
Solving linear system of equations Ax=b

9

iterations
10-20

10-15

10-10

 10-5

TENSOR CORE ACCELERATED LIBRARIES
Accuracy just after the reduced precision LU factorization

Accuracy of the obtained solution

Ø FP64-TC provide a solution down to
the FP64 accuracy

Ø TF32 and FP16 provide a solution to
around 1E-05 accuracy

Ø Obtained solution has 11 digits loss
compared to the FP64 one,

Ø can we do better and achieve the
FP64 accuracy?

Results obtained using CUDA 11.0 and A100 GPU.

10

iterations
10-20

10-15

10-10

 10-5

TENSOR CORE ACCELERATED LIBRARIES

E. Carson, N. J. Higham, Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, SIAM J. Sci. Comput., 40(2), A817–A847.
A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC-18 Dallas, 2018
A.Haidar, H. Bayraktar, S. Tomov, J. Dongarra, N. J. Higham Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems, submitted Royal Society Journal UK 2020.

How can we get to FP64 accuracy?

Idea: use reduced precision to compute the expensive flops (LU O(n3)) and then iteratively refine
the solution (O(n2)) in order to achieve the FP64 level of accuracy

Iterative refinement for solving Ax = b:

Perform a factorization in reduced precision A = LU

11

Iterative refinement for solving Ax = b:

Perform a factorization in reduced precision A = LU
refine
WHILE || r || > eps_FP64
1. Find correction c such that Ac = r, c = U\(L\r)
2. x = x + c
3. r = b – Ax (with original A).
END

TENSOR CORE ACCELERATED LIBRARIES
How can we get to FP64 accuracy?

Idea: use reduced precision to compute the expensive flops (LU O(n3)) and then iteratively refine
the solution (O(n2)) in order to achieve the FP64 level of accuracy

E. Carson, N. J. Higham, Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, SIAM J. Sci. Comput., 40(2), A817–A847.
A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC-18 Dallas, 2018
A.Haidar, H. Bayraktar, S. Tomov, J. Dongarra, N. J. Higham Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems, submitted Royal Society Journal UK 2020.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
iterations

10-20

10-15

10-10

 10-5

12

2k4k6k8k10k 14k 18k 22k 26k 30k 34k 40k
Matrix size

0
4
8
12
16
20
24
28
32
36
40
44

Tf
lo

p/
s

FP64 on V100
FP16->64 on V100

TENSOR CORE ACCELERATED LIBRARIES

4X

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Ø solving Ax = b using FP64 LU

Ø solving Ax = b using FP16 Tensor
Cores LU and iterative refinement to
achieve FP64 accuracy

Ø FP16 is about 4X faster within a
solution to the FP64 accuracy.

VOLTA V100

Problem generated with Hilbert matrices.

Performance Behavior, Hilbert matrices, V100

Results obtained using CUDA 11.0 and V100 GPU.

13

2k4k6k8k10k 14k 18k 22k 26k 30k 34k 40k
Matrix size

0
4
8
12
16
20
24
28
32
36
40
44

Tf
lo

p/
s

FP64 on A100/V100 (solid/dashed)
FP16->64 on A100/V100 (solid/dashed)
BF16->64 on A100 (solid)
TF32->64 on A100 (solid)

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Ø Speedup compared to FP64 has same
trend on both hardware.

Ø TF32 is 3.3X faster within a solution
to the FP64 accuracy.

Ø FP16 is 3.5X faster within a solution to
the FP64 accuracy.

Ø A100 provides about 1.8X speedup
over V100 for both FP16 and FP64
variants

Problem generated with Hilbert matrices.

Performance Behavior, Hilbert matrices, V100 v.s. A100

1.9X

3.5X

Results obtained using CUDA 11.0 and V100, A100 GPU.

1.8X

14

2k4k6k8k10k 14k 18k 22k 26k 30k 34k 40k
Matrix size

0
4
8
12
16
20
24
28
32
36
40
44

Tf
lo

p/
s

Performance of solving Ax=b to the FP64 accuracy

9
23

9
11
37

11 11
50

12 13

nc

13 14

nc

14 14

nc

14 15

nc

15
16

nc

16 16

nc

16 17

nc

17 17

nc

18 18

nc

19 20

nc

20 21

nc

21 22

nc

22

FP16->64 dhgesv
BF16->64 dbgesv
TF32->64 dxgesv
FP64 dgesv

2.5X

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Ø solving Ax = b using FP64 LU

Ø solving Ax = b using FP16 Tensor
Cores LU and iterative refinement to
achieve FP64 accuracy

Ø solving Ax = b using BF16 Tensor
Cores LU and iterative refinement to
achieve FP64 accuracy

Ø solving Ax = b using TF32 Tensor
Cores LU and iterative refinement to
achieve FP64 accuracy

Problem generated with a clustered distribution of the singular values

m=n
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k 26k 28k 30k

Tf
lo

p/
s

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

FP16 TC square
FP16 TC k=256

FP16 square
FP16 k=256

FP32 square
FP32 k=256

FP64 square
FP64 k=256

(a) Performance of the rank-k update (Xgemm function) used in Xgetrf.
matrix size

2k 4k 6k 8k 10k 14k 18k 22k 26k 30k 34k

Tf
lo

p/
s

0
2
4
6
8

10
12
14
16
18
20
22
24
26 FP16-TC (Tensor Cores) hgetrf LU

FP16 hgetrf LU
FP32 sgetrf LU
FP64 dgetrf LU

(b) Performance of the Xgetrf routine.

Fig. 2. Performance of the three arithmetic precisions obtained on a Nvidia V100 GPU.

Type Description
1 - Random numbers with diagonal modified to be dominant

2 Positive eigenvalue l Random s in [1
cond ,1] such that their logarithms are uniformly

3 Positive eigenvalue l Clustered s s = [1, · · · ,1, 1
cond];

4 - Clustered s s = [1, · · · ,1, 1
cond];

5 Positive eigenvalue l Arithmetically distributed s si = 1� (i�1
n�1)(1�

1
cond), i = 1..n, si+1

si
is constant

6 - Arithmetically distributed s si = 1� (i�1
n�1)(1�

1
cond), i = 1..n, si+1

si
is constant

TABLE II
DESCRIPTION OF THE TEST MATRICES WITH cond = 100.

63 iterations.
Figure 4a shows results on matrices where all methods

behave well. Convergence was achieved in 3 iterations for
FP32, 4 iterations for FP16-TC, and 7 iterations for FP16.
Figure 4b has the same singular value distribution as Figure 4a
but not necessarily positive eigenvalues. This type is the most
difficult, and the FP16 variants using either IR or IRGM do
not converge. Note that the FP16 IRGM can converge when
allowing more than 2,000 iterations, but for our experiment we
limited the max iterations to 400, since we have seen a large
performance drop when iterations are around 200—where the
iterative refinement becomes a drawback. The FP32 variants
are not influenced by the matrix type and always converge in
about 3–4 iterations. Surprisingly, the FP16-TC behaves very
well and converges in about 18 iterations, while the FP16 did
not converge.
Lesson: For all the matrices considered, the FP16-TC
variant is the most robust and fastest in convergence
among the FP16 arithmetic-based methods. The FP32
refinement variants emphasize a stable behavior regardless
of the matrix types.

NJH: I suggest changing “stable” to “consistent”
since “stable” implies numerical stability, which
is not the issue here.

This observation suggests the surprising effectiveness of
the FP16 arithmetic, which might be robust enough to be
used in HPC dense linear system solvers.

VII. EXPERIMENTAL RESULTS DISCUSSION

This section presents the performance results of our three
iterative refinement methods – dhgesv-TC, dhgesv, and
dsgesv– using either the IR or IRGM, and compared to the
reference dgesv solver. We also depict the number of itera-
tions required by each method to reach FP64 accuracy. The
Tflop/s are computed based on the same formula (P = 2n3

3 time),
which means performance reflects the time to solution, e.g., if
a method has 2X higher performance, it is twice faster. The
performance results are presented in Figure 5 and Figure 6 for
the six representative types of matrices studied in Section VI.
In each figure there are four performance curves that refer
to the reference dgesv and the three iterative refinement
algorithms dhgesv-TC, dhgesv, and dsgesv.

In Figure 5a, the matrix is diagonally dominant and as
shown in Section VI, all variants require three to five iterations
to converge. Thus, one can expect that the low precision
iterative refinement algorithms will bring a large speedup
compared to dgesv. Since the number of iterations is small,
we imagine that the speedup ratio will be similar to the one
observed in Figure 2b for the LU factorization. We confirm

Results obtained using CUDA 11.0 and A100 GPU.

Performance Behavior, matrices with SVD clustered distribution, A100

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

15

Matrices from SuiteSparse, A100

TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

16

Ø Solving matrices from the SuiteSparse
collection corresponding to a wide
range of applications in fluid dynamics,
structural mechanics, materials
science, nuclear energy, oil and gas
exploration and others

Ø TF32 converges faster than both FP16
and BF16 and is able to solve wider
range of problems

Results obtained using CUDA 11.0 and A100 GPU.

Matrices from SuiteSparse and other problems, A100

TCAIRS NUMERICAL BEHAVIOR

17

Ø TF32 converges faster than both FP16 and
BF16 and is able to solve wider range of
problems

Ø In terms of performance TF32 provide time
to solution close or better than both BF16
and FP16

Ø In summary, TF32 can be considered the
most robust and the fastest variant

Results obtained using CUDA 11.0 and A100 GPU.

Matrices from SuiteSparse and other problems, A100

Performance Fallback cases Notes

FP32 1x 1 Hard case

TF32 2x 2 Hard case

FP16 scaled 2x 3 Scaling fixes
many cases

BF16 2x 6 Loss of
precision is an
issue for
several cases

TCAIRS PERFORMANCE BEHAVIOR

18

cuSOLVER
CUDA 11.0

10.2 +
TCAIRS-QR real
TCAIRS-QR complex
TCAIRS-QR NRHS
FP32, FP16-TC
FP64-TC, TF32-TC, BF16-TC
Many other advancements

Mixed Precision Solvers are gaining a lot of attention for their power to
provide a solution up to 4X-5X faster and for their energy efficiency.

January 2019 Nov 2019 May 2020

cuSOLVER
CUDA 10.2

TCAIRS-LU real
TCAIRS-LU complex
TCAIRS-LU NRHS
FP64, FP32, FP16-TC

Magma 2.5.0

TCAIRS-LU real
FP64, FP32, FP16-TC

Tensor Core Accelerated Iterative Refinement Solver (TCAIRS)
TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

Thank you very much

