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NVIDIA A100 VS NVIDIA TESLA V100

Feature Highlights for Math Libraries

GPU Codename GV100

GPU Architecture NVIDIA Volta

SMs 80

GPU Boost Clock 1530 MHz

Peak FP16 Tensor Core TFLOPS' 125

Peak Bfloat16 Tensor Core NA

TFLOPS'

Peak TF32 Tensor TFLOPS' NA

Peak FP64 Tensor TFLOPS' NA

Peak INT8 Tensor TOPS' NA

Peak FP16 TFLOPS' 31.4

Peak Bfloat16 TFLOPS' NA

Peak FP32 TFLOPS' 15.7

Peak FP64 TFLOPS' 7.8

Peak INT32 TOPS' 15.7

Memory Interface 4096-bit HBM2

Memory Size 32GB /16 GB

Memory Data Rate 877.5 MHz DDR

Memory Bandwidth 900 GB/sec

L2 Cache Size 6144 KB YRR

Shared Memory Size / SM Configurable up to [/ AN
1.Peak rates are based on GPU Boost Clock 96 KB N y //
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NVIDIA A100 VS NVIDIA TESLA V100

Feature Highlights for Math Libraries

FP16/FP32 no precision FP32 Output
input loss product accumulation FP16, FP32

FP32]

Data Center GPU Name NVIDIA Tesla V100

GPU Codename GV100

GPU Architecture NVIDIA Volta
SMs 80

GPU Boost Clock 1530 MHz
Peak FP16 Tensor Core TFLOPS'  [125

Peak Bfloat16 Tensor Core NA

TFLOPS'

Peak TF32 Tensor TFLOPS' NA

Peak FP64 Tensor TFLOPS' NA

Peak INT8 Tensor TOPS’ NA

Peak FP16 TFLOPS' 31.4

Peak Bfloat16 TFLOPS' NA

Peak FP32 TFLOPS' 15.7

Peak FP64 TFLOPS' 7.8

Peak INT32 TOPS' 15.7

Memory Interface 4096-bit HBM2
Memory Size 32GB /16 GB
Memory Data Rate 877.5 MHz DDR
Memory Bandwidth 900 GB/sec

L2 Cache Size 6144 KB

Shared Memory Size / SM

1.Peak rates are based on GPU Boost Clock

Configurable up to
96 KB

N
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NVIDIA A100 VS NVIDIA TESLA V100

Feature Highlights for Math Libraries

Tensor Cores for:
Mixed-precision Tensor Float 32 (TF32) and Bfloat16
Full double precision (FP64) DMMA

Increased memory bandwidth 1.6 TB/s

FP32 FP32
matrix matrix
Precision
mantissa
Format to TF32
m23 and multipl

FP32 MARARRRRRARRRRRRRENRNNR P

m10
FP16 FP32 accumulate
BF16 BN«

m10
TF32 [RRARRRRNR

Matrix

Data Center GPU Name NVIDIA Tesla V100 NVIDIA A100

GPU Codename GV100 GA100

GPU Architecture NVIDIA Volta NVIDIA Ampere
SMs 80 108

GPU Boost Clock 1530 MHz 1410 MHz
Peak FP16 Tensor Core TFLOPS' 125 312

Peak Bfloat16 Tensor Core NA 312

TFLOPS'

Peak TF32 Tensor TFLOPS' NA 156

Peak FP64 Tensor TFLOPS' NA 19.5

Peak INT8 Tensor TOPS' NA 624

Peak FP16 TFLOPS' 31.4 78

Peak Bfloat16 TFLOPS' NA 39

Peak FP32 TFLOPS' 15.7 19.5

Peak FP64 TFLOPS' 7.8 9.7

Peak INT32 TOPS' 15.7 19.5

Memory Interface 4096-bit HBM2 5120-bit HBM2
Memory Size 32GB /16 GB 40 GB
Memory Data Rate 877.5 MHz DDR 1215 MHz DDR
Memory Bandwidth 900 GB/sec 1.6 TB/sec

L2 Cache Size 6144 KB 40960 KB

Shared Memory Size / SM

1.Peak rates are based on GPU Boost Clock

Configurable up to
96 KB

164 KB

Configurable I.T: ! M\
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TENSOR CORE ACCELERATED LIBRARIES

Multi-precision numerical methods
Solving linear system of equations Ax=b

LU factorization is used to solve a
linear system Ax=b

s BN
b ‘ I I
then ‘ I =
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TENSOR CORE ACCELERATED LIBRARIES

Multi-precision numerical methods
Solving linear system of equations Ax=b

LU factorization used to solve Ax=b is dominated by GEMMs

L 2, U
ii
step 1 > step 2 > step 3 > step 4
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TENSOR CORE ACCELERATED LIBRARIES

Multi-precision numerical methods
Solving linear system of equations Ax=b

LU factorization used to solve Ax=b is dominated by GEMMs

GA100 Tflops
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TENSOR CORE ACCELERATED LIBRARIES

Multi-precision numerical methods
Solving linear system of equations Ax=b

LU factorization used to solve Ax=b is dominated by GEMMs

GA100 Tflops
350 L PR ]
300 — L1
|
200 step 1 _— step 2 _— step 3 - 5 step 4
panel l 1 l 1
150
100 waate - 10 001 1141 11101 4041
50
0 R 1995 1935
3 % % 2 ) S How about a multi-precision LU then ?
o o v w Z Z
> % v v Cy N
A A A A
o o o o , : |
Can it be accelerated using Tensor Cores R\
and still get fp64 accuracy? L 12))
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TENSOR CORE ACCELERATED LIBRARIES

Accuracy just after the reduced precision LU factorization

solving Ax=b

== F'P64

== FP16-TC|""

=== BF16-TC
=== TF32-TC

# iterations

Results obtained using CUDA 11.0 and A100 GPt /

Accuracy of the obtained solution

FP64-TC provide a solution down to
the FP64 accuracy

TF32 and FP16 provide a solution to
around 1E-05 accuracy

Obtained solution has 11 digits loss
compared to the FP64 one,

can we do better and achieve the
FP64 accuracy?

9 <ANVIDIA.



TENSOR CORE ACCELERATED LIBRARIES

How can we get to FP64 accuracy?

ldea: use reduced precision to compute the expensive flops (LU O(n3)) and then iteratively refine
the solution (O(n?)) in order to achieve the FP64 level of accuracy

solving Ax=b

. . . I == FP64 ,
HETENES EITEETE ol Pl 25 = L I e FPLOTOLES
I ==:BF16-TC
Perform a factorization in reduced precision A = LU 10° - === TF32-TC| -
==
4=
==1070 1
=
S
e
§%)
2
10-15 __ & N & B B 8 B BN B B B B B B B B _°® B B B B B B B B B B B |
10-20 — —
# iterations
b))
E. Carson, N. J. Higham, Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, SIAM J. Sci. Comput., 40(2), A817-A847. " )

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC-18 Dallas, 2018 10 «\DZI'IVIDIA.
A.Haidar, H. Bayraktar, S. Tomov, J. Dongarra, N. J. Higham Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems, submitted Royal Society Journal UK 2020.



TENSOR CORE ACCELERATED LIBRARIES

How can we get to FP64 accuracy?

ldea: use reduced precision to compute the expensive flops (LU O(n3)) and then iteratively refine
the solution (O(n?)) in order to achieve the FP64 level of accuracy

solving Ax=b

q q . L FP16-TC—FP64 | |
Iterative refinement for solving Ax = b: | BF16-TC:>>FP64 |

TF32-TC—FP64

Perform a factorization in reduced precision A = LU 105+ == P64 -
refine '
WHILE || r | | > eps_FP64 ==
1. Find correction c such that Ac = r, ¢ = U\(L\r) <= 10| |
2. X=X+¢C __.*10
3. r =b - Ax (with original A). g
END E
s L N N N I . ——

1 0'20 — -

0123456 7 89 1011121314151617

# iterations AR\

[ BIN

E. Carson, N. J. Higham, Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions, SIAM J. Sci. Comput., 40(2), A817-A847. N

A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, Harnessing GPU Tensor Cores for Fast FP16 Arithmetic to Speed up Mixed-Precision Iterative Refinement Solvers, SC-18 Dallas, 2018 11 <ANVIDIA.
A.Haidar, H. Bayraktar, S. Tomov, J. Dongarra, N. J. Higham Mixed-Precision Iterative Refinement using Tensor Cores on GPUs to Accelerate Solution of Linear Systems, submitted Royal Society Journal UK 2020.




TENSOR CORE ACCELERATED LIBRARIES

Performance Behavior, Hilbert matrices, V100

44 I I I I I FlOpS = 2n3/(3 time)
40 2:;:;‘152 o4 0"\‘,’1133 | meaning twice higher is twice faster
- on

36 - :

32 - ,

28 - VOLTA V100 : » solving Ax = b using FP64 LU
2]
?02.24 i 1 > solving Ax = b using FP16 Tensor
= 20 " 4 . Cores LU and iterative refinement to
= 16 | achieve FP64 accuracy

12 - | » FP16 is about 4X faster within a

8 - i solution to the FP64 accuracy.

4 " |

0 |

2k4k6k8kiOk 14k 18k 22k 26k 30k 34k 40k

R Results obtained using CUDA 11.0 and V100 GPIL” | 3\
Matrix size -

Problem generated with Hilbert matrices. 17 <AnviDiA



TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

Performance Behavior, Hilbert matrices, V100 v.s. A100

44 \ \ \

==FP64 on A100/V100 (solid/dashed)
40 - .@-FP16->64 on A100/V100 (solid/dashed)

36 = BF16->64 on A100 (solid)

0= TF32->64 on A100 (solid)

.”.---‘---‘---*---‘

}1.9X

>1 .8X

Problem generated with Hilbert matrices.

2k4k6k8kiOk 14k 18k 22k 26k 30k 34k

Matrix size

40k

Results obtained using CUDA 11.0 and V100, A1f: ! .

Flops = 2n3/(3 time)
meaning twice higher is twice faster

Speedup compared to FP64 has same
trend on both hardware.

TF32 is 3.3X faster within a solution
to the FP64 accuracy.

FP16 is 3.5X faster within a solution to
the FP64 accuracy.

A100 provides about 1.8X speedup
over V100 for both FP16 and FP64
variants

13 <ANVIDIA.



TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

Performance Behavior, matrices with SVD clustered distribution, A100

Performance of solvmg Ax-b to the FP64 accuracy

-O- FP16->64 dhgesv
40 == BF16->64 dbgesv
36 | 0~ TF32->64 dxgesv
=#=FP64 dgesv

C Nncnc nC nC hc nCc nc

2k4dk6k8kiOk 14k 18k 22k 26k 30k 34k
Matrix size

Problem generated with a clustered distribution of the singular values

40k

Results obtained using CUDA 11.0 and A100 GPt- | .

Flops = 2n3/(3 time)
meaning twice higher is twice faster

solving Ax = b using FP64 LU

solving Ax = b using FP16 Tensor
Cores LU and iterative refinement to
achieve FP64 accuracy

solving Ax = b using BF16 Tensor
Cores LU and iterative refinement to
achieve FP64 accuracy

solving Ax = b using TF32 Tensor
Cores LU and iterative refinement to
achieve FP64 accuracy

14 <ANVIDIA.



TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

Matrices from SuiteSparse, A100

NVIDIA.



TCAIRS NUMERICAL BEHAVIOR

Matrices from SuiteSparse and other problems, A100

> SOlVing matrices from the SUiteSparse # iterations of the TCAIRS solver for different problems
collection corresponding to a wide © .
range of applications in fluid dynamics, o FP16TC
structural mechanics, materials v o o

science, nuclear energy, oil and gas

. 40 H
exploration and others o
°© B
> TF32 converges faster than both FP16 g% o o
and BF16 and is able to solve wider g ©
= 20 o 8
range of problems o o
© ]
" ° o © pO
o §ggeg E'°° :
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TCAIRS PERFORMANCE BEHAVIOR

Matrices from SuiteSparse and other problems, A100

4.0
FP32 Hard case 3.5 seses FP32
TF32 2x 2 Hardcase | _ 7 FP16-TC
S BF16-TC B
FP16 scaled 2x 3 Scaling fixes N
many cases ,§ 2.5
BF16 2x 6 Loss of =
precision is an g 2.0
issue for a
several cases ﬁ
» TF32 converges faster than both FP16 and ;3,1'5
BF16 and is able to solve wider range of o
problems '
> In terms of performance TF32 provide time 0.5
to solution close or better than both BF16
0.0
and FP16 PR R E R L R L L R D E L LN R
i ShagrnNo oA So* AR me Ty @ TN ExE IS e
» In summary, TF32 can be considered the 528 es R R Egm.ﬁ é' §Y3ISEE ° %‘Sg%f "2 2EBgE
. o o m - = = 8 o 4] U w c -
most robust and the fastest variant *3d "7 E g X8°F 2 MO P I
Ry 2 g 9 £8 3% 2%
Results obtained using CUDA 11.0 and A100 GPU. ,% g 4 o F =4 \\E
. 7 ) ))
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N 74
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TENSOR CORE ACCELERATED ITERATIVE REFINEMENT SOLVER

Tensor Core Accelerated Iterative Refinement Solver (TCAIRS)

January 2019 Nov 2019 May 2020

TCAIRS-LU real
FP64, FP32, FP16-TC TCAIRS-LU real 10.2 +

TCAIRS-LU complex TCAIRS-QR real

TCAIRS-LU NRHS TCAIRS-QR complex
FP64, FP32, FP16-TC TCAIRS-QR NRHS

FP32, FP16-TC
FP64-TC, TF32-TC, BF16-TC
Many other advancements

1 N

Mixed Precision Solvers are gaining a lot of attention for their power to [/ )
provide a solution up to 4X-5X faster and for their energy efficiency. N7/

18 <ANVIDIA.



Thank you very much NVIDIA,
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