Preconditioners for saddle point weak-constraint 4D-Var with correlated observation errors

Jemima M. Tabeart University of Edinburgh jemima.tabeart@ed.ac.uk @jemimatabeart

> With John Pearson University of Edinburgh

Weak constraint 4D-Var

- Balancing information from observations and background over a time window
- Allow our model to be imperfect

$$\begin{aligned} \min_{\mathbf{x} \in \mathbb{R}^s} J(\mathbf{x}) &= \left\| \mathbf{x}^{(0)} - \mathbf{x}_b \right\|_{\mathbf{B}^{-1}}^2 \\ &+ \frac{1}{2} \sum_{j=0}^n \left\| \mathbf{H}_j \left(\mathbf{x}^{(j)} \right) - \mathbf{y}_j \right\|_{\mathbf{R}_j^{-1}}^2 \\ &+ \frac{1}{2} \sum_{j=1}^n \left\| \mathbf{x}^{(j)} - \mathbf{M}_j \left(\mathbf{x}^{(j-1)} \right) \right\|_{\mathbf{Q}_j^{-1}}^2 \end{aligned}$$

Saddle point formulation of weak-constraint data assimilation

Can re-write objective function in saddle point form (after linearising operators)

$$\begin{pmatrix}
D & O & L \\
O & R & H
\end{pmatrix}
\begin{pmatrix}
\delta \lambda \\
\delta \mu \\
\delta \chi
\end{pmatrix} = \begin{pmatrix}
\delta \\
\delta \\
\delta
\end{pmatrix}$$

$$D = \begin{pmatrix} \mathcal{B} & \otimes_1 & & \\ & \otimes_2 & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

$$H = \begin{pmatrix} \mu_0 & \mu_1 & \dots & \mu_n \end{pmatrix}$$

$$D = \begin{pmatrix} \mathcal{B} & \otimes_1 & & & \\ & \otimes_2 & & & \\ & & \ddots & & \\ & & & \otimes_n \end{pmatrix} \qquad \mathcal{K} = \begin{pmatrix} \mathcal{K}_o & & & \\ & \mathcal{K}_1 & & & \\ & & \ddots & & \\ & & & & \mathcal{K}_n \end{pmatrix}$$

$$H = \begin{pmatrix} H_0 & & & \\ & H_1 & & & \\ & & & H_n \end{pmatrix} \qquad L = \begin{pmatrix} I & & & \\ -M_0 & I & & \\ & -M_1 & I & \\ & & -M_n & I \end{pmatrix}$$

Advantages and challenges of the saddle point problem for DA

Advantages:

Parallelisable nature

Challenges:

- Typical assumption (1,1) block is hard, (2,1) block is easy (opposite in DA): Theory/heuristics don't always apply (invalidating standard assumptions)
- Designing preconditioners: prior work often assumes can invert (1,2) block exactly

Approximating L (the model)

$$L = \begin{bmatrix} I & & & & & \\ -M_0 & J & & & & \\ & -M_1 & J & & & \\ & & -M_2 & J & & \\ & & & -M_n & J & \\ & & & & -M_n & J \end{bmatrix}$$

Standard approximations L

$$L_{0} = \begin{bmatrix} \bar{1} & & & & \\ & \bar{1} & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & 1 \end{bmatrix} \qquad L_{1} = \begin{bmatrix} \bar{1} & & & & \\ -\bar{1} & \bar{1} & & & \\ & -\bar{1} & \bar{1} & & \\ & & -\bar{1} & \bar{1} \end{bmatrix}$$

Proposed L

Eigenvalues of $\mathbf{L}_{M}^{-1}\mathbf{L}\mathbf{L}^{T}\mathbf{L}_{M}^{-1}$

Assume: $M_i \equiv M$ for all subwindows.

Theorem

Let **M** be symmetric with eigenvalues in $\gamma \leq \lambda(\mathbf{M}) \leq \mu$. Then the eigenvalues of \mathbf{LL}^T are bounded above by

$$\lambda(\mathbf{LL}^T) \le 1 + \mu^2 + \max(2|\gamma|, 2|\mu|) \tag{1}$$

Theorem

Let **M** be symmetric with $\sigma(\mathbf{M}) \leq 1$ then for k=3 we can bound the largest eigenvalue of $\mathbf{L}_M^{-1} \mathbf{L} \mathbf{L}^T \mathbf{L}_M^{-1}$ above by 8.

Numerical experiments

- M_i = Heat equation with zero Dirichlet boundary conditions
- $\mathbf{B} = \text{spatial correlations } (s \times s)$
- \mathbf{Q}_i = spatial correlations
- \mathbf{R}_i = random entries with block structure $(p \times p)$
- \mathbf{H}_i = random selection of half of variables
- n+1 = number of observation times

Eigenvalues of $L_M^{-1}LL^TL_M^{-1}$

n+1	no units	No missing blocks	Unner hound	Largest eva
		NO IIII33IIIg DIOCKS	opper bound	Largest eva
3	1500	0	-	1
4	1000	1	3	2.618
5	1500	1	4	3.7319
6	2000	1	5	4.791
7	1500	2	6	4.8928
8	2000	2	7	5.105
9	2500	2	7.5	5.5546
10	2000	3	8	5.5940
11	2500	3	8	5.6745
12	3000	3	8	5.8798
13	2500	4	8	5.8985

Table: Number of unit eigenvalues of $L_M^{-1}LL^TL_M^{-1}$ for s=500 for k=3 (skipping every third block) for different number of observation subwindows. Each subwindow is the same length. Number of missing subwindows = floor(n/3). $i=\text{remainder}(\frac{n+1}{\text{missing blocks}})$

Approximating the observation error covariance matrix

- R_{bl} split into equally sized blocks
- $\mathbf{R}_{RR} = \mathbf{R} + \delta \mathbf{I}$ (increase all eigenvalues)
- ullet R_{ME} increase all eigenvalues below a threshold T to be equal to T

Theorem

The eigenvalues of $R_{RR}^{-1}R$ are given by

$$\lambda(\mathbf{R}_{RR}^{-1}\mathbf{R}) = \frac{\lambda(\mathbf{R})}{\lambda(\mathbf{R}) + \delta}.$$
 (2)

Theorem

The eigenvalues of $R_{ME}^{-1}R$ are given by

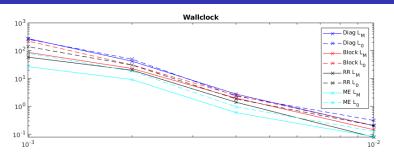
$$\lambda_i(\mathbf{R}_{ME}^{-1}\mathbf{R}) = \begin{cases} 1 & \text{if } \lambda_i > T \\ \frac{\lambda_i}{T} < 1 & \text{if } \lambda_i \le T \end{cases}$$
 (3)

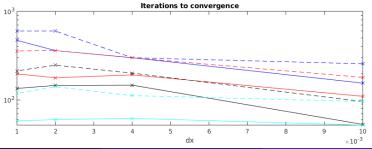
Numerical experiments

$$P = \begin{pmatrix} D & \circ & \circ \\ \circ & R & \circ \\ \circ & \circ & S \end{pmatrix} \qquad \stackrel{\sim}{S} = L_{M} D^{-1} L_{M}$$

- Use exact D
- ullet Compare $\widetilde{f L}={f L}_0$ and $\widetilde{f L}={f L}_M$
- ullet Compare $\widetilde{\mathbf{R}} = \mathit{diag}(\mathbf{R})$ with $\widetilde{\mathbf{R}} = \mathbf{R}_{\mathit{bl}}, \mathbf{R}_{\mathit{RR}}, \mathbf{R}_{\mathit{ME}}$
- Serial experiments using MINRES for increasing dimension n, fixed number of subwindows.

Wallclock time vs convergence





Conclusions

- Proposed a new preconditioner for L in the saddle point formulation of wc4D-Var
- Multiple approaches to precondition R when it is correlated
- Can bound the eigenvalues of the preconditioned L and R terms
- Iterations and wallclock time are improved compared to standard preconditioners

Conclusions

- Proposed a new preconditioner for L in the saddle point formulation of wc4D-Var
- Multiple approaches to precondition R when it is correlated
- Can bound the eigenvalues of the preconditioned L and R terms
- Iterations and wallclock time are improved compared to standard preconditioners

Ongoing work

- Bounds on preconditioned saddle point system
- \bullet Parallelisable $\widetilde{\mathbf{R}}?$ Can we do better than naive diagonal approach?
- More realistic experiments: more complicated PDEs
 New preconditioners are parallelisable, but currently running in serial