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Motivation

original projected problem solution
GMRES | min ||Ax — b||2 | min||Hkt1ky — ||roll2€1]]2 | givens rotations
CG min | || a Tkky = ||n0]|2€1 recurrences
Krylov | Ax — b|oo, ? ?
|Ax — b




Problem statement

Definition
Let A€ C™ " and b € C™ aright hand side. The iteraties of the
max-norm Krylov are given by

X 1= argmin, e, . i, (ATAATr) i:??ax |(re)il-

where r, = b — A(xo + Vkyk) and Vj is a basis for Kx(ATA, ATrp)



Problem as a LP problem

3 r,= b - At ge)

min Y
AViYk — o = —k
AViYk — o < Yk
Y =0



Reformulation of LP

min v
Yk — o+ AViyk > 0 @)
Yk + 1o — AVkyk > 0
Yk = 0.

or _

min vk
— AViYk — 7 < — 1o )
AViyk — vk < Io
Yk = 0.

or, in matrix notation.

min
Yk Yk

o o))
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Dual

Lemma
The dual problem of (5) is

et ()

—1 —1 A\ (1 (6)
—VTAT vTAT J\pu) — \0)’
A>0 pu>0.
There are k + 1 conditions and 2N unknowns. We know from

complementarity condition that only k + 1 Lagrange multipliers will
differ from zero.



Revised Simplex

An LP in the standard form is

minc’ x
st. Ax=0»b (7)
I<x<u

where:
» Ac R™"js full rank, b € R™
» c, x,l, u are n-vectors.

When A is full rank, there is a collection of m columns that form a
non-singular submatrix B.
Indices of selected columns are denoted by:

> B,
» N remaining indices
Bartels-Golub, Forrest-Tomlin, Reid, ...



Simplex applied to projected system

. Yk
min (1 0) (y)

—1 —AVk Yk
(5 ) G
Y >0,§>0,t>0

Leads to a simplex with 2N variables.
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Conventions

Lower bounds in indices: {1, ..., N}

upper bounds in indices: {N + 1, ...,2N}

Set of active constraints: B, C {1, ...,2N} for Ik
Optimal set of active constraints: B C {1, ..., 2N} for Kk
Set of inactive constraints: N, C {1,...,2N}
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Initial Step
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Active Set

N+ . 2N

L4

A RY

|B*| = k + 1 (10)

G- (D) o
1 A ) g K (10) ) ies;



Expanding the Krylov subspace
N 2N

N+ N




Initial basic Feasible guess for Kx.1(A, o)

Definition
We define an initial basic feasible guess for iteration k + 1 with
basis V1. It is the solution the following auxiliary problem

min ki,
QS Yk+1,Y

s.t. ‘A(X -+ ka,j— -+ Vk+1 O{) — b‘iEB; = Yk+1» (13)

JA(X + Viyid + vk1@) — blienrs < Yk,

where B is the optimal active set for Krylov subspace Vj, the
previous step of the algorithm.



One-dimensional subspace

Previous solution v, (¥, 0), from Vi, is a feasible solution of the

auxiliary problem in Vi1
We change k11, ¥ € R¥ and a, k + 2 variables, while we satisfy the

k 4+ 1 equations
<_1 —AVi Avk+1> Vykf _ <(—r0)> (1)
—1 AV AVk+1 icBy (I; (fo) ieB;

This now defines a one-dimensional subspace that we can
parametrise through ~.



Search Direction
We define the matrix

—AVi  —Avgiq K+1x k+1
= R 15
By 11 < AV Aviss € (15)

that allows us to rewrite the system (14) as

+
—r *
Br+1 <yk > = ( - 0> + Vk + DAYkt
« 0 JieB;

= ( o ) + Yk FAVk+1 (16)
ieB:

*
(i)
from which find that

+ * *
<y§> = (yg ) + Bl Dt = <yg ) tdbye (17)

where d € R¥*1 is the search direction and A1 is the step size.




How large is the step size in the search direction?

We start with the lowerbound constraints from the optimization
problem. For each index i, we can calculate the step size A~

(= — D1 — AViy )i = (—1o)i
reorganisation leads to

(1) y _ (o — vk — AViyk)i
(AW-H)/ = (1 + AVkad);

Similarly for the upperbound constraints
(=7 — Ayk + AViyk + AVidAvi)i = ()i

where we find

for i=1,...,N.

(—ro — yk + AViyk)i
(1 — AVid);

The smallest negative value of A~ is then

(ay®)); =

Aveyr =max( max  Ay!, max  AA?
(m,-<o,/¢3q "7 Avi<0.i¢ B, )




Initial basic feasible guess
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Optimal basic set By 1?
Dual conditions from the KKT for the subset of non-zero Lagrange

multipliers
- Z pk — Ak = —1,
VIAT N — VTAT e = 0, (24)
A>0 pu>0.

or in matrix form

A —1 —1 A 1
CkT+1 (Ml;) = (VTAT _VTAT) (MI;) = (0) : (25)

This is k + 2 square system that we can solve

), = )
=C (26)
<Mk i€Byt1 1o

If the solution satisfies Ax > 0 and u, > 0, we have the optimal basic
set and B;, ; := Bk1. Otherwise, pivot as in classical revised
Simplex.



Algorithm 1: Krylov-Simplex. Outer — Krylov, inner — simplex

n=b—Ax;

Yo, i = max; | (r0)i| ;

By = {i} index where the max is reached;
Vi = [’o/\lfoH]

fork =1,

Calculate AVy = [AVk_1Av] and store. By = (jq"irk) .
i€By

d =B "1

r, A~y, yx = blockingfunction (dy,B) ;

By = Bk—1 U {r}

while ...do

_ (-1 A% .
Ck = (—1 AVi )’.GBk’

—T7 (1) .
57 ()

if A; > O0then
Break; Solution Found ;

else
g = min(;) leaving index;
By = By \ {a}:
b =C.leg;
r, Ay, yk = blockingfunction (do, By) ;
By =B U {r}:
end

end

X = Xo + VieYk

Ik lloo = k3

expand Vi1 = [Vk, vk+1] using Arnoldi;

end




Max-Norm versus Krylov

Let us recall:

Ixlloo = max x| = max\/]xi[? < VP = lixl

n

Ixlls = > bl < V/nlixllz

i=1
Ix[I7 < nllx]13

Ixll2 < VAl Xl



Convergence Krylov-simplex vs GMRES, A € R™"

max |GMRES]|
max|Simplex|
— === \lsimplex\_2
-~~~ \|GMRES\ 2
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Convergence Krylov-Simplex vs Golub-Kahan, A € R"™*"

15 T
max |simplex|
| —-==~-\|simplex \|_2
1 [} max |GK|
l!, - \GK\_2
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outer/innerloop
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It is beneficial to stop inner loop early and expand the Krylov
subspace.



Summary and Conclusions

In progress
» Reuse factorisation: QRupdate, Bartels-Golub for small dense
Matrices
» Similar Krylov-Simplex Algorithm for ¢4-norm.
» Exploiting the Hessenberg/Tridiagonal structure.
» Analysis of stability and LU factors reuse.
Applications
» Calibration and inverse problems in financial, optical and other
complex systems.
Conclusion
» |t is possible to solve the projected LP system with simplex.

Happy to collaborate.



