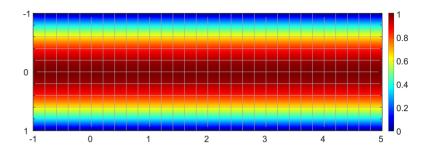
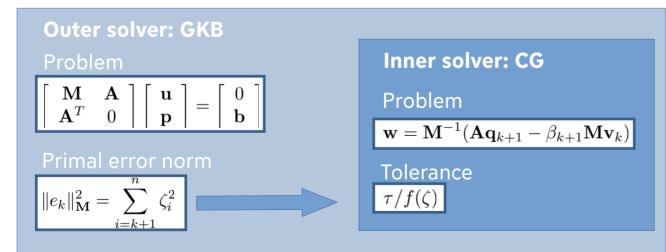


Inexact inner-outer Golub-Kahan bidiagonalization method: A relaxation strategy

Andrei Dumitrasc¹, Vincent Darrigrand², Carola Kruse³, Ulrich Rüde¹

 ¹ Chair for Computer Science 10 - System Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
² IRIT-CNRS, Toulouse, France
³ CERFACS, Toulouse, France




Problem solved: Stokes flow

... in a long and thin rectangular channel:

$$-\Delta \vec{u} + \nabla p = 0$$
$$\nabla \cdot \vec{u} = 0$$

Nested solving and relaxation strategy

Effective: savings between 30% and 60%. Simple: no problem dependent parameters are needed. Negligible cost: only scalar computations are performed.