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The weighted nonlinear least-squares problem
We consider the problem of fitting n state variables of a dynamical system to m � n noisy
observations, given a noisy prior state estimate, which can be formalized as

min
x∈Rn

f(x) = 1
2
∥∥y −H(x, t)

∥∥2
R−1 + 1

2‖x− x0‖2B−1 ,

where H is the prediction operator, B ∈ Rn×n the a priori state error covariance matrix and
R ∈ Rm×m the observation error covariance matrix.

Given a current approximate solution xj and approximating dj = y − H(xj , t) ≈ y − Hjxj ,
the solution using the Gauss-Newton method (Nocedal et al., 2006) computes xj+1 = xj + sj

with the j-th descent direction sj satisfying(
B−1 +HT

j R
−1Hj

)
︸ ︷︷ ︸

= Aj

sj = B−1(xc − xj) +HT
j R
−1dj︸ ︷︷ ︸

= bj
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Solving the linearized subproblem

The descent directions sj are computed using an iterative method with B as a right precondi-
tioner. If sj = Bs̄j , then s̄j is such that

Āj s̄j = bj , with


Āj = In +HT

j R
−1HjB (new system matrix),

BĀj = ĀT
j B (B-symmetry).

BBB Conjugate gradient in the B inner product (Gürol, 2013) with preconditioner P̄j .

To enhance the solution process of the sequence, it is common to update the preconditioner,
starting from P̄1 = In. Then for all j ≥ 2, we consider

P̄j = P̄j−1 + Vj

(
Λ−1

j − Ik

)
V T

j B,

where Vj ∈ Rn×k and Λj ∈ Rk×k contain approximate eigenvectors and eigenvalues of P̄j−1Āj

respectively, computed using randomized methods.
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BĀj = ĀT
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Randomized methods to compute eigenpairs

Let Ā, P̄ be two B-symmetric matrices, we are interested in finding pairs (λ, v) such that,

P̄ Ā v = λ v

⇐⇒ BĀ v = λBP̄−1 v︸ ︷︷ ︸
Generalized symmetric
eigenvalue problem

.

Prior algorithms: (Saibaba, Lee and Kitanidis, 2016) for generalized Hermitian eig. problem.

1 Need to apply BĀ and (BP̄−1)−1 = P̄B−1.

2 Require to perform a QR factorization in the BP̄−1 inner product.
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Our randomized algorithms
Design of a dedicated class of randomized methods following two classical steps:

Step 1: randomized subspace iteration (Halko et al., 2011)

Construct search space Vq = (P̄ Ā)q Ω with random matrix Ω ∈ Rn×p and q ≥ 1.

Step 2: Rayleigh-Ritz method in the B inner product

Extract k ≤ p eigenpairs from Vq by solving the projected eigenvalue problem

BĀ v = λBP̄−1 v , v ∈ Rn.

BBB Existing approach: Construct Vq such that V T
q BP̄

−1Vq = Ip

+ Solve a standard symmetric eig. problem.

BBB Our approach: Construct Vq such that V T
q Vq = Ip

+ Solve a generalized symmetric eig. problem.
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Construct search space Vq = (P̄ Ā)q Ω with random matrix Ω ∈ Rn×p and q ≥ 1.

Step 2: Rayleigh-Ritz method in the B inner product

Extract k ≤ p eigenpairs from Vq by solving the projected eigenvalue problem
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Framework of the theoretical analysis
Let us consider the eigenvalue decomposition

P̄ ĀV = V Λ, with V a BP̄−1-orthogonal matrix.

Let Vk ∈ Rn×k denote the matrix containing the k dominant eigenvectors, then the best rank
k approximation of P̄ Ā is

(P̄ Ā)k = VkV
T

k BĀ = πBP̄ −1 (Vk) P̄ Ā,

where πBP̄ −1 (Vk) denotes the BP̄−1-orthogonal projector onto R(Vk).

BBB Analysis: Let Z ∈ Rn×p be such that R(Z) ≈ R(Vk), then we consider the low rank
approximation πBP̄ −1 (Z) P̄ Ā and its associated error in weighted spectral norm |||·|||2:

|||πBP̄ −1 (Z)

(

P̄ Ā

)k

−

(

P̄ Ā

)k

|||2

is ideally equal to 0.
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(P̄ Ā)k = VkV
T
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where πBP̄ −1 (Vk) denotes the BP̄−1-orthogonal projector onto R(Vk).

BBB Analysis: Let Z ∈ Rn×p be such that R(Z) ≈ R(Vk), then we consider the low rank
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(P̄ Ā)k = VkV
T
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where πBP̄ −1 (Vk) denotes the BP̄−1-orthogonal projector onto R(Vk).

BBB Analysis: Let Z ∈ Rn×p be such that R(Z) ≈ R(Vk), then we consider the low rank
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Average-case analysis of low rank approximation error
Theorem (Y.D., S.G., A. Scotto Di Perrotolo, X.V., 2022)

Let Z = (P̄ Ā)q Ω with q ≥ 1 and Ω ∈ Rn×p ∼ N (0, In), and let us denote by λ1 ≥ · · · ≥ λn

the eigenvalues of P̄ Ā. Then for all 1 ≤ k ≤ p− 2 one has

E
[
|||[In − πBP̄ −1 (Z)](P̄ Ā)k|||2

]

≤ c2 +O

(
1
√
p

)
= O

(λk+1
λk

)q


,

Additional results:

A similar result holds in weighted Frobenius norm.

Our analysis integrates the case of non-standard Gaussian matrices.

In particular, if we
denote by Cov(Ω) the covariance matrix of Ω then one has

Cov(Ω) = BP̄−1 =⇒ c2 = 0.
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Average-case analysis of low rank approximation error
Theorem (Y.D., S.G., A. Scotto Di Perrotolo, X.V., 2022)
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The 4D-Var data assimilation test problem
We propose an application of the proposed method to a 4D-Var data assimilation problem.

The Lorenz 95 model: State vector x = (X1, . . . , Xn) whose components satisfy

dXl

dt
= −Xl−2Xl−1 +Xl−1Xl+1 −Xl + F, 1 ≤ l ≤ n

with periodic boundary conditions. We set n = 500 state variables and N = 24 time steps
implying operators of size up to 12500× 12500.

Three scenarios: Sensitivity to the number of observations

LowObs: 120 observations are made (≈ 1% of observations),

MedObs: 1260 observations are made (≈ 10% of observations),

HighObs: 2520 observations are made (≈ 20% of observations).
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Details of the experiments

General setting:

We perform 6 Gauss-Newton steps.

Tolerance for the CG convergence is set to ε = 10−4 with a maximum of 250 iterations.

Randomized algorithms compute k = 30 eigenpairs with p = 50 samples and q = 1.

Practical preconditioning strategies:

No_LMP: the preconditioner is not updated.

Ritz_LMP: the preconditioner is updated using Ritz LMP (Gratton et al. 2011).

Randomized_LMP: the randomized LMP for the B-PCG is constructed at each GN step.
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Results for HighObs
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Observations: The gain obtained for Randomized_LMP seems fairly constant,

The Ritz LMP is more efficient in the last GN steps due to the updates.
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Results for MediumObs
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Results for LowObs
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Overview of the computational costs for MediumObs

Accounting for the parallel nature of randomized methods, one has

Ritz_LMP Randomized_LMP

PCG iterations (total) 796 524

Storage (# vectors) 30 to 150 50

Additional construction cost Ritz_LMP Randomized_LMP

Applications of R−1, Hj , H
T
j 0 6

Applications of B 0 12
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Conclusions and perspectives

Conclusions:

We have proposed algorithms that generalize prior algorithms while improving the
computational cost,
We have derived an average-case analysis that is either new or improves state-of-the-art
results,
The numerical experiments conducted on a toy problem illustrated the behavior of the
resulting preconditioners.

Perspectives:

Study adaptive preconditioning strategies to combine randomized and Ritz
approximations.
Investigate the performance in larger scale applications (OOPS code from ECMWF).
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Pseudocode of the algorithm

Input: B-symmetric matrices Ā, P̄ ∈ Rn×n, integers p, q ≥ 1 and k ≤ p

% Step 1
Draw a random matrix Ω ∈ Rn×p, and set V = Ω
Perform the QR factorization of ĀV = QR and set X = Q

for j = 1, . . . , q − 1 do
Compute V = P̄X

Perform the QR factorization of ĀV = QR and set X = Q
end

% Step 2
Form T = R−TV TBX ∈ Rp×p and Φ = XTBP̄X ∈ Rp×p,
Solve the generalized Hermitian eigenvalue problem TW = ΦWΘ
Truncate W and Θ to keep k approximate eigenpairs.

Output: Matrices Ṽ = VW ∈ Rn×k and Λ̃ = Θ−1 ∈ Rk×k such that P̄ ĀṼ ≈ Ṽ Λ̃.
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