

Direct solution of larger coupled sparse/dense FEM/BEM linear systems using low-rank compression

Sparse Days

Emmanuel Agullo, <u>Marek Felšöci</u>, Guillaume Sylvand June 20 - 22, 2022

Inria Bordeaux Sud-Ouest, France Team-project CONCACE

Industrial context

AIRBUS

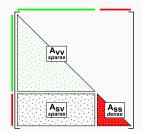
- study the propagation of sound waves emitted by an aircraft
 - acoustic pollution reduction, prototype certification
- discrete model for numerical simulations
 - volume domain v (jet flow)
 - Finite Elements Method (FEM) [11, 9]
 - surface domain **s** (surface of the aircraft and the volume domain)
 - Boundary Elements Method (BEM) [6, 13]

An acoustic wave (blue arrow) emitted by the aircraft's engine, reflected on the wing and crossing the jet flow. Real-life case [12] (left) and a numerical model example (right). Global linear system coupling [7, 8] the FEM and the BEM unknowns:

$$\left[\begin{array}{ccc} A_{vv} & A_{sv}^{T} \\ A_{sv} & A_{ss} \end{array}\right] \times \left[\begin{array}{c} x_{v} \\ x_{s} \end{array}\right] = \left[\begin{array}{c} b_{v} \\ b_{s} \end{array}\right]$$

• symmetric coefficient matrices:

- sparse parts volume domain v discretization with FEM (A_{vv}), surface/volume domain interaction (A_{sv})
- a dense part surface domain s discretization with BEM (A_{ss})
- $\bullet \ \ \text{finer} \ \ \text{model} \ \rightarrow \ \ \text{larger} \ \ \text{system}$
- direct solution using Schur complement [14]



Direct solution

Schur complement

 $\bullet\,$ reduce the problem on boundaries $\rightarrow\,$ simplify the system to solve

$$\begin{array}{c|c} R_{1} \\ R_{2} \end{array} \begin{bmatrix} A_{vv} & A_{sv}^{T} \\ A_{sv} & A_{ss} \end{bmatrix} \times \begin{bmatrix} x_{v} \\ x_{s} \end{bmatrix} = \begin{bmatrix} b_{v} \\ b_{s} \end{bmatrix}$$

Computation steps

1. eliminate x_v from the second equation \rightarrow Schur complement *S*

$$\begin{array}{c} R_{\mathbf{1}} \\ R_{\mathbf{2}} \leftarrow R_{\mathbf{2}} - A_{sv}A_{vv}^{-1} \times R_{\mathbf{1}} \\ \begin{bmatrix} A_{vv} & A_{sv}^{T} \\ 0 & \underbrace{A_{ss} - A_{sv}A_{vv}^{-1}A_{sv}^{T}}_{S} \end{bmatrix} \times \begin{bmatrix} x_{v} \\ x_{s} \end{bmatrix} = \begin{bmatrix} b_{v} \\ b_{s} - A_{sv}A_{vv}^{-1}b_{v} \end{bmatrix}$$

2. solve the reduced Schur complement system

$$Sx_s = b_s - A_{sv}A_{vv}^{-1}b_v$$

3. determine x_v using x_s

$$x_{v} = A_{vv}^{-1}(b_{v} - A_{sv}^{T}x_{s})$$

Numerical computation

Properties of the input linear system

- A_{vv} and A_{ss} are symmetric
- A_{vv} and A_{sv} are sparse

Ideal computation of $S = A_{ss} - A_{sv}A_{vv}^{-1}A_{vs}$

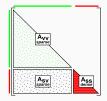
• symmetric factorization of $A_{vv} \rightarrow L_{vv}L_{vv}^T$: <u>fill-in</u>

$$S = A_{ss} - A_{sv} (L_{vv} L_{vv}^{T})^{-1} A_{sv}^{T}$$

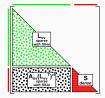
• computation of the Schur complement

$$S = A_{ss} - \underbrace{(A_{sv}(L_{vv}^{T})^{-1})}_{\text{triangle scheme}} \underbrace{(A_{sv}(L_{vv}^{T})^{-1})^{T}}_{\text{inverse large scheme}}$$

triangular solve implicitly known



Initial state of A

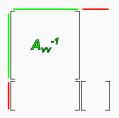


A after computing S

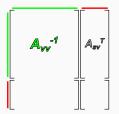
- coupling of a sparse direct and a dense direct solver
 - fully-featured community solvers with appealing functionalities
 - low-rank compression, out-of-core, distributed memory parallelism
- two different schemes depending on the way of using the building blocks of the sparse solver
 - baseline coupling
 - advanced coupling

- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve

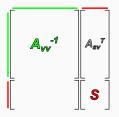
- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve



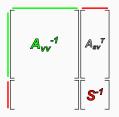
- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve



- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve

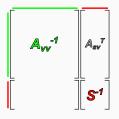


- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve

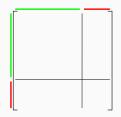


baseline coupling

- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve

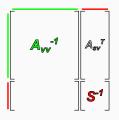


- A as a whole
- sparse facto.+Schur
- dense facto., dense solve

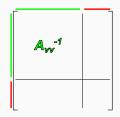


baseline coupling

- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve

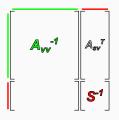


- A as a whole
- sparse facto.+Schur
- dense facto., dense solve

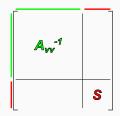


baseline coupling

- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve

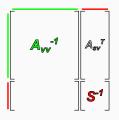


- A as a whole
- sparse facto.+Schur
- dense facto., dense solve

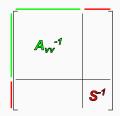


baseline coupling

- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve

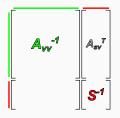


- A as a whole
- sparse facto.+Schur
- dense facto., dense solve



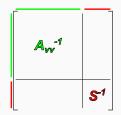
baseline coupling

- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve



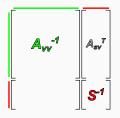
- *S* non-compressed, dense
- A_{sv}^T explicitly stored, dense

- A as a whole
- sparse facto.+Schur
- dense facto., dense solve



baseline coupling

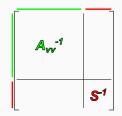
- separate A_{vv} , A_{sv} and A_{ss}
- sparse facto., sparse solve
- dense facto., dense solve



- *S* non-compressed, dense
- A_{sv}^{T} explicitly stored, dense

advanced coupling

- A as a whole
- sparse facto.+Schur
- dense facto., dense solve



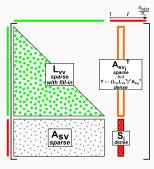
• *S* non-compressed, dense

- keep using fully-featured well optimized community solvers despite limitations in their API
- two new algorithms for block-wise computation of S \rightarrow allow for low-rank compression of S
 - 1. multi-solve based on the baseline coupling
 - 2. multi-factorization based on the advanced coupling

Multi-solve

$$S_{i} = A_{ss_{i}} - A_{sv} \underbrace{(I_{vv} L_{vv}^{T})^{-1} A_{sv_{i}}^{T}}_{I_{vv}}$$

- 1 sparse facto. of the green matrix (symmetric)
- plenty of *sparse solve* involving the orange blocks (result is dense)

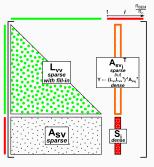


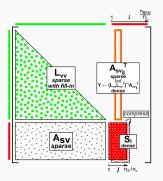
WITHOUT compression

Multi-solve

$$S_{i} = A_{ss_{i}} - A_{sv} \underbrace{(L_{vv}L_{vv}^{T})^{-1}A_{sv_{i}}^{T}}_{I_{vv}}$$

- 1 sparse facto. of the green matrix (symmetric)
- plenty of *sparse solve* involving the orange blocks (result is dense)



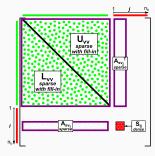


WITH compression

Multi-factorization

$$S_{ij} = A_{ss_{ij}} - \overbrace{A_{sv_i}(L_{vv}U_{vv})^{-1}A_{sv_j}^T}^{used with Schur API}$$

- multiple *sparse facto.+Schur* of the violet matrix (non-symmetric)
- computation of the Schur complement blocks via API

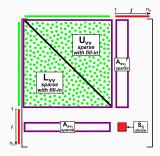


WITHOUT compression

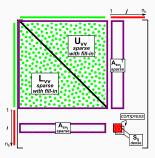
Multi-factorization

$$S_{ij} = A_{ss_{ij}} - \overbrace{A_{sv_i}(L_{vv}U_{vv})^{-1}A_{sv_j}^T}^{used with Schur API}$$

- multiple *sparse facto.+Schur* of the violet matrix (non-symmetric)
- computation of the Schur complement blocks via API



WITHOUT compression



WITH compression

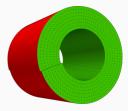
Experimental evaluation

Academic test case

- short pipe (length: 2 m, radius: 4 m) [3]
- systems close enough to real-life models
- FEM/BEM mesh (v and s parts)

Configuration

- PlaFRIM [1], 24-core miriel nodes
 - 128 GiB of RAM
- precision parameter ϵ set to 10^{-3}
- sparse solver with low-rank compression always on
- out-of-core disabled

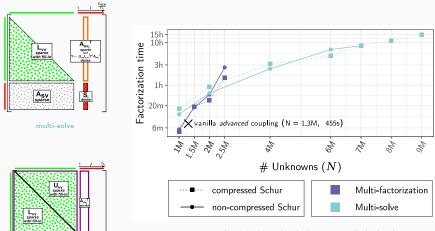


A short pipe (20,000 unknowns)

Implementation

- sparse solver
 - MUMPS [4]
- dense solvers
 - SPIDO
 - (non-compressed S)
 - HMAT (compressed *S*) [10]

Solving larger systems

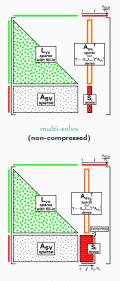


Best computation times of multi-solve and multi-factorization for both solver couplings, MUMPS/HMAT (compressed Schur) and MUMPS/SPIDO (non-compressed Schur). Parallel runs using 24 threads on single *miriel* node.

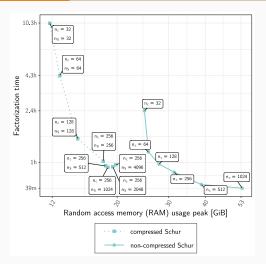
multi-factorization

S. S.

Performance-memory trade-off of multi-solve

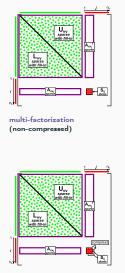


multi-solve (compressed)

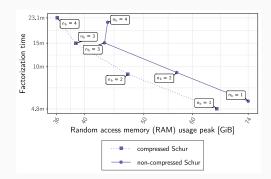


Comparison between the non-compressed and compressed multi-solve for the MUMPS/HMAT (compressed Schur) and the MUMPS/SPIDO (non-compressed Schur) couplings on a coupled FEM/BEM system with 2,000,000 unknowns for varying n_c and n_s .

Performance-memory trade-off of multi-factorization



multi-factorization (compressed)



Comparison between the non-compressed and compressed multi-factorization for the MUMPS/HMAT (compressed Schur) and the MUMPS/SPIDO (non-compressed Schur) couplings on a coupled FEM/BEM system with system with 1,000,000 unknowns for varying n_b .

Industrial application

Industrial test case

- 2,259,468 unknowns
 - 2,090,638 in the v part
 - 168,830 in the s part
- 32-core machine with 384 GiB of RAM

Model FEM/BEM mesh

Results

Algorithm	RAM	Time
	(GiB)	
vanilla advanced coupling	>384	N/A
multi-solve (non-compressed S)	224	15h
multi-factorization (non-compressed S)	275	8h
multi-solve (compressed S)	35	9h
multi-factorization (compressed S)	137	51m

Computed acoustic pressure

Summary

Contribution

- two algorithms allowing us to:
 - benefit from the most advanced functionalities of fully-featured solvers
 - process larger systems compared to vanilla couplings
 - 9M (multi-solve) and 2.5M (multi-factorization) vs. 1.3M on a single 24-core, 128 GiB RAM workstation
 - industrial case impossible to run before on a single 32-core, 384 GiB RAM workstation
- confirm the advantage of compressing the Schur complement
- validate the algorithms on a real-life industrial case

Ongoing work

• extension to out-of-core and distributed memory cases

Towards ideal implementation

Main limitations

multi-solve

multifactorization

- multi-solve explicit storage of dense orange blocks
- multi-factorization re-factorizations of the green matrix

Collaboration with A. Buttari (IRIT/ENSEEIHT)

- coupling of task based direct solvers
 - sparse: qr_mumps [2]
 - no compression, no distributed memory parallelism
 - dense: HMAT
 - relying on the StarPU runtime [5]
 - built-in out-of-core capability
- S is never assembled entirely in memory
- dense solver can start working without waiting for *S* to be fully assembled

Looking for a post-doctoral research position (Ph.D. defense expected in January 2023)

Acknowledgement

- Projet Région Nouvelle-Aquitaine 2018-1R50119 « HPC scalable ecosystem »
- PlaFRIM experimental testbed [1] (supported by Inria, CNRS LABRI and IMB, Université de Bordeaux, Bordeaux INP and Conseil Régional d'Aquitaine)

- PlaFRIM: Plateforme fédérative pour la recherche en informatique et mathématiques. https://plafrim.fr/.
- [2] qr_mumps, a software package for the solution of sparse, linear systems on multicore computers. http://buttari.perso.enseeiht.fr/qr_mumps/.
- [3] test_FEMBEM, a simple application for testing dense and sparse solvers with pseudo-FEM or pseudo-BEM matrices. https://gitlab.inria.fr/solverstack/test_fembem.
- [4] P. R. Amestoy, I. S. Duff, and J.-Y. L'Excellent, MUMPS multifrontal massively parallel solver version 2.0, (1998).

References ii

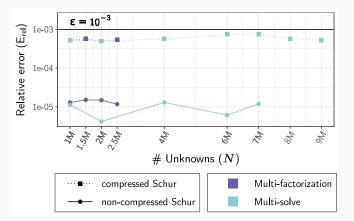
- [5] C. Augonnet, S. Thibault, and R. Namyst, StarPU: a Runtime System for Scheduling Tasks over Accelerator-Based Multicore Machines, Rapport de recherche RR-7240, INRIA, Mar. 2010.
- [6] P. K. Banerjee and R. Butterfield, Boundary element methods in engineering science, vol. 17, McGraw-Hill London, 1981.
- [7] F. Casenave, Méthodes de réduction de modèles appliquées à des problèmes d'aéroacoustique résolus par équations intégrales, PhD thesis, Université Paris-Est, 2013.
- [8] F. Casenave, A. Ern, and G. Sylvand, *Coupled BEM-FEM for the convected Helmholtz equation with non-uniform flow in a bounded domain*, Journal of Computational Physics, 257 (2014), pp. 627–644.
- [9] A. Ern and J.-L. Guermond, *Theory and practice of finite elements*, vol. 159, Springer Science & Business Media, 2013.

References iii

- [10] B. Lizé, Résolution Directe Rapide pour les Éléments Finis de Frontière en Électromagnétisme et Acoustique : H-Matrices. Parallélisme et Applications Industrielles., PhD thesis, Université Paris 13, 2014.
- [11] P. Raviart and J. Thomas, A mixed finite element method for 2-nd order elliptic problems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes, eds., vol. 606 of Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1977, pp. 292–315.
- [12] Sebaso, Jet engine airflow during take-off. https://commons.wikimedia.org/wiki/File: 20140308-Jet_engine_airflow_during_take-off.jpg.

- [13] A. Wang, N. Vlahopoulos, and K. Wu, Development of an energy boundary element formulation for computing high-frequency sound radiation from incoherent intensity boundary conditions, Journal of Sound and Vibration, 278 (2004), pp. 413–436.
- [14] F. Zhang, The Schur complement and its applications, vol. 4, Springer Science & Business Media, 2006.

Numerical assessment

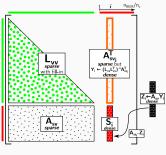


Relative error E_{rel} for the runs of multi-solve and multi-factorization having the best execution times and for both solver couplings, MUMPS/HMAT (compressed Schur) and MUMPS/SPIDO (non-compressed Schur). Parallel runs using 24 threads on single *mirel* node.

Multi-solve

$$S_{i} = A_{ss_{i}} - \underbrace{A_{sv}}_{Z_{i}} \underbrace{(L_{vv}L_{vv}^{T})^{-1}A_{sv_{i}}^{T}}_{Z_{i}}$$

- 1 sparse facto. of the green matrix (symmetric)
- plenty of *sparse solve* involving the orange blocks (result is dense)

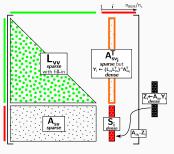


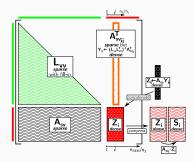
WITHOUT compression

Multi-solve

$$S_{i} = A_{ss_{i}} - \underbrace{A_{sv} \underbrace{A_{sv} \left(L_{vv} L_{vv}^{\mathsf{T}}\right)^{-1} A_{sv}^{\mathsf{T}}}_{Z_{i}}}_{Z_{i}}$$

- 1 sparse facto. of the green matrix (symmetric)
- plenty of *sparse solve* involving the orange blocks (result is dense)





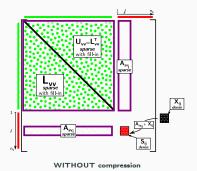
WITHOUT compression

WITH compression

Multi-factorization

$$S_{ij} = A_{ss_{ij}} - \overbrace{A_{sv_i}(L_{vv}U_{vv})^{-1}A_{sv_j}^T}^{used with Schur API
ightarrow X_{ij}}$$

- multiple *sparse facto.+Schur* of the violet matrix (non-symmetric)
- computation of the Schur complement blocks via API



Multi-factorization

$$S_{ij} = A_{ss_{ij}} - \overbrace{A_{sv_i}(L_{vv}U_{vv})^{-1}A_{sv_j}^T}^{used with Schur API
ightarrow X_{ij}}$$

- multiple *sparse facto.+Schur* of the violet matrix (non-symmetric)
- computation of the Schur complement blocks via API

