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Industrial context

ˆ study the propagation of sound waves emitted by an aircraft
ˆ acoustic pollution reduction, prototype certi�cation

ˆ discrete model for numerical simulations
ˆ volume domain v (jet �ow)

ˆ Finite Elements Method (FEM) [11, 9]
ˆ surface domain s (surface of the aircraft and the volume domain)

ˆ Boundary Elements Method (BEM) [6, 13]

An acoustic wave (blue arrow) emitted by the aircraft's engine, re�ected on the wing and crossing the jet �ow.
Real-life case [12] (left) and a numerical model example (right).
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Problem

Global linear systemcoupling [7, 8] the FEM and the BEM unknowns:
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ˆ symmetriccoe�cient matrices:

ˆ sparseparts - volume domain v
discretization with FEM (Avv ),
surface/volume domain interaction (Asv)

ˆ a densepart - surface domain s
discretization with BEM (Ass)

ˆ �ner model ! largersystem

ˆ direct solution using Schur complement [14]
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Direct solution

Schur complement

ˆ reduce the problem on boundaries! simplify the system to solve
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Computation steps

1. eliminatexv from the second equation! Schur complementS
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2. solve the reduced Schur complement system

Sxs = bs � AsvA� 1
vv bv

3. determinexv usingxs

xv = A� 1
vv (bv � AT

svxs)
3



Numerical computation

Properties of the input linear system

ˆ Avv and Ass are symmetric

ˆ Avv and Asv are sparse

Initial state of A

Ideal computation of S = Ass � AsvA� 1
vv Avs

ˆ symmetric factorization ofAvv ! LvvLT
vv : �ll-in

S = Ass � Asv(LvvLT
vv ) � 1AT

sv

ˆ computation of the Schur complement

S = Ass � (Asv(LT
vv ) � 1)

| {z }
triangular solve

(Asv(LT
vv ) � 1)T

| {z }
implicitly known

A after computing S
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Implementation

ˆ coupling of a sparsedirect and adensedirect solver
ˆ fully-featured community solvers with appealing functionalities

ˆ low-rank compression, out-of-core, distributed memory parallelism

ˆ two di�erent schemes depending on the way of using the building
blocks of thesparsesolver

ˆ baselinecoupling
ˆ advancedcoupling
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Vanilla solver couplings

baseline coupling

ˆ separateAvv , Asv and Ass

ˆ sparse facto., sparse solve

ˆ dense facto., dense solve
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Coping with limitations

ˆ keep using fully-featured well optimized community solvers despite
limitations in their API

ˆ two new algorithms for block-wise computation ofS
! allow for low-rank compression ofS

1. multi-solve based on thebaselinecoupling
2. multi-factorization based on theadvancedcoupling
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Proposed algorithms

Multi-solve

Si = Assi � Asv

solve ! Yiz }| {
(LvvLT

vv ) � 1AT
svi

ˆ 1 sparse facto.of the greenmatrix (symmetric)

ˆ plenty of sparse solveinvolving theorangeblocks (result is dense)

WITHOUT compression
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Proposed algorithms

Multi-factorization

Sij = Assij �

used with Schur APIz }| {
Asvi (LvvUvv ) � 1AT

svj

ˆ multiple sparse facto.+Schurof the violet matrix (non-symmetric)

ˆ computation of the Schur complement blocks via API

WITHOUT compression
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Experimental evaluation

Academic test case

ˆ short pipe (length: 2 m, radius: 4 m) [3]

ˆ systems close enough to real-life
models

ˆ FEM/BEM mesh ( v and s parts)

Con�guration

ˆ PlaFRIM [1], 24-coremiriel nodes

ˆ 128 GiB of RAM

ˆ precision parameter� set to 10� 3

ˆ sparsesolver withlow-rank
compression always on

ˆ out-of-core disabled

A short pipe (20,000 unknowns)

Implementation

ˆ sparsesolver

ˆ MUMPS [4]

ˆ densesolvers

ˆ SPIDO
(non-compressedS)

ˆ HMAT
(compressedS) [10]
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Solving larger systems

multi-solve

multi-factorization

Best computation times of multi-solve and multi-factorization for both solver
couplings, MUMPS/HMAT (compressed Schur) and MUMPS/SPIDO
(non-compressed Schur). Parallel runs using 24 threads on single miriel node.
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Performance-memory trade-o� of multi-solve

multi-solve
(non-compressed)

multi-solve
(compressed)

Comparison between the non-compressed and compressed multi-solve for the
MUMPS/HMAT (compressed Schur) and the MUMPS/SPIDO (non-compressed
Schur) couplings on a coupled FEM/BEM system with 2,000,000 unknowns for
varying nc and nS.
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Performance-memory trade-o� of multi-factorization

multi-factorization
(non-compressed)

multi-factorization
(compressed)

Comparison between the non-compressed and compressed multi-factorization for the
MUMPS/HMAT (compressed Schur) and the MUMPS/SPIDO (non-compressed
Schur) couplings on a coupled FEM/BEM system with system with 1,000,000
unknowns for varying nb .
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Industrial application

Industrial test case

ˆ 2,259,468 unknowns

ˆ 2,090,638 in the v part
ˆ 168,830 in the s part

ˆ 32-core machine with 384 GiB of RAM

Results

Algorithm RAM Time
(GiB)

vanilla advancedcoupling >384 N/A
multi-solve (non-compressed S) 224 15h

multi-factorization (non-compressed S) 275 8h
multi-solve (compressed S) 35 9h

multi-factorization (compressed S) 137 51m

Model FEM/BEM mesh

Computed acoustic pressure
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Summary

Contribution

ˆ two algorithms allowing us to:

ˆ bene�t from the most advanced functionalities of fully-featured
solvers

ˆ process larger systems compared to vanilla couplings
ˆ 9M ( multi-solve) and 2.5M ( multi-factorization ) vs. 1.3M on a single

24-core, 128 GiB RAM workstation
ˆ industrial case impossible to run before on a single 32-core, 384 GiB

RAM workstation

ˆ con�rm the advantage of compressing the Schur complement

ˆ validate the algorithms on a real-life industrial case

Ongoing work

ˆ extension to out-of-core and distributed memory cases
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Towards ideal implementation

multi-solve

multi-
factorization

Main limitations

ˆ multi-solve- explicit storage of denseorangeblocks

ˆ multi-factorization - re-factorizations of thegreenmatrix

Collaboration with A. Buttari (IRIT/ENSEEIHT)

ˆ coupling of task based direct solvers
ˆ sparse: qr_mumps[2]

ˆ no compression, no distributed memory parallelism

ˆ dense: HMAT
ˆ relying on the StarPU runtime [5]

ˆ built-in out-of-core capability

ˆ S is never assembled entirely in memory

ˆ densesolver can start working without waiting forS to
be fully assembled
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Looking for a post-doctoral research position
(Ph.D. defense expected in January 2023)
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Numerical assessment

Relative error Erel for the runs of multi-solve and multi-factorization having the best execution times and for both
solver couplings, MUMPS/HMAT (compressed Schur) and MUMPS/SPIDO (non-compressed Schur). Parallel
runs using 24 threads on single miriel node.
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