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Industrial context

AIRBUS

"~ study the propagation of sound waves emitted by an aircraft
acoustic pollution reduction, prototype certi cation
" discrete model for numerical simulations
" volume domain [/ (jet ow)
" Finite Elements Method (FEM) [11, 9]
" surface domainf] (surface of the aircraft and the volume domain)
" Boundary Elements Method (BEM) [6, 13]

An acoustic wave (blue arrow) emitted by the aircraft's engine, re ected on the wing and crossing the jet ow.
Real-life case [12] (left) and a numerical model example (right).



Problem

Global linear systencoupling [7, 8] the FEM and the BEM unknowns:
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" symmetriccoe cient matrices:

" sparseparts - volume domainfil I~ =
discretization with FEM (A),
surface/volume domain interaction Asy) -

" a densepart - surface domainji]
discretization with BEM (Ass)

ner model! largersystem

" direct solution using Schur complement [14]



Direct solution

Schur complement

" reduce the problem on boundariés simplify the system to solve
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Computation steps

1. eliminatex, from the second equatioh Schur complement
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' Xy by
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2. solve the reduced Schur complement system
Sx = b ASVAVVl

3. determinex, usingXxs
Xv = (bv A vXs)



Numerical computation

Properties of the input linear system

" A, and Ag are symmetric

" A, and A, aresparse

Initial state of A

Ideal computation of S= Ass  AsA,Avs

" symmetric factorization ofA,, ! LwLJ,: Il-in

S=Ass Asv(bw LI\,) 1A;-v

~ computation of the Schur complement

S= Ass FAS_V(bTN) 1? fASV(I_{TQI) 1)T} A atter computing S

triangular solve  implicitly known




Implementation

"~ coupling of asparsedirect and adensedirect solver
~ fully-featured community solvers with appealing functionalities
" low-rank compression, out-of-core, distributed memory parallelism
"~ two di erent schemes depending on the way of using the building
blocks of thesparsesolver
~ baselinecoupling
" advancedcoupling




Vanilla solver couplings

baseline coupling
" separateA,y, Asy and Ags
" sparse factq.sparse solve
~ dense factq.dense solve
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Vanilla solver couplings

baseline coupling advanced coupling
" separateA,y, Asy and Ags ~ A as a whole
" sparse factq.sparse solve "~ sparse facto.+Schur
~ dense facta.dense solve ~ dense facta.dense solve
Aw-1 ASVT
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Coping with limitations

" keep using fully-featured well optimized community solvers despite
limitations in their API

" two new algorithms for block-wise computation &
I allow for low-rank compression &

1. based on thebaselinecoupling
2. multi-factorization based on theadvancedcoupling



Proposed algorithms

solvg ! Y
Z_?rl 1 T{
S =Ass As(bwly) “A

SVj

" 1 sparse facto.of the greenmatrix (Symmetric)

" plenty of sparse solvénvolving theorangeblocks (result is dense)
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Proposed algorithms

Multi-factorization

7used Witl'}|Schur API{
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Experimental evaluation

Academic test case

" short pipe (length: 2 m, radius: 4 m) [3]

" systems close enough to real-life
models

" FEM/BEM mesh (¥ and ] parts)

A short pipe (20,000 unknowns)

Con guration

Implementation
PlaFRIM [1], 24-coremiriel nodes

"~ sparsesolver
~ 128 GiB of RAM ~ MUMPS [4]
" precision parameter set to 10 3 ~ densesolvers
"~ sparsesolver withlow-rank " SPIDO

compression always on (non-compresseds)

~ out-of-core disabled HMAT
(compressedS) [10]
10



Solving larger system

15h 4
10h 4

Ay

spgrde

Y LA
donse

w
>

Factorization time
-
b=

20m-+
6m-4 vanilla advanced coupling (N = 1.3M, 455s)
T T T T T
S § ] & 5§
# Unknowns (N)
compressed Schur B Multi-factorization
—e— non-compressed Schur Multi-solve
Best computation times of and multi-factorization for both solver
couplings, MUMPS/HMAT (compressed Schur) and MUMPS/SPIDO
(non-compressed Schur). Parallel runs using 24 threads on single miriel node.

multi-factorization
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Performance-memory trade-o of  multi-solve

[ — — 10.3h
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w
(non-compressed)
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39m
& S S ® &
Random access memory (RAM) usage peak [GiB]
compressed Schur
non-compressed Schur
Comparison between the non-compressed and compressed for the
MUMPS/HMAT (compressed Schur) and the MUMPS/SPIDO (non-compressed
Schur) couplings on a coupled FEM/BEM system with 2,000,000 unknowns for
(compressed) varying nc¢ and ng.
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Comparison between the non-compressed and compressed multi-factorization for the
MUMPS/HMAT (compressed Schur) and the MUMPS/SPIDO (non-compressed
Schur) couplings on a coupled FEM/BEM system with system with 1,000,000

unknowns for varying np.
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Industrial application

Industrial test case

~ 2,259,468 unknowns

" 2,090,638 in the ¥ part
" 168,830 in the | part

L 3

Model FEM/BEM mesh

~ 32-core machine with 384 GiB of RAM

Results
Algorithm RAM  Time
(GiB)
vanilla advanced coupling >384 N/A
(non-compressed S) 224 15h
multi-factorization (non-compressed S) 275 8h Computed acoustic pressure

(compressed S) 35 9h

137 51m

multi-factorization (compressed S)
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Contribution

"~ two algorithms allowing us to:
~ benet from the most advanced functionalities of fully-featured

solvers
~ process larger systems compared to vanilla couplings
© oM ( ) and 2.5M (multi-factorization ) vs. 1.3M on a single

24-core, 128 GiB RAM workstation
industrial case impossible to run before on a single 32-core, 384 GiB
RAM workstation

~ con rm the advantage of compressing the Schur complement

"~ validate the algorithms on a real-life industrial case

Ongoing work

" extension to out-of-core and distributed memory cases

15



Towards ideal implementation

Main limitations

- explicit storage of denserangeblocks

~ multi-factorization - re-factorizations of thegreenmatrix

Collaboration with A. Buttari  (IRIT/ENSEEIHT)

" coupling of task based direct solvers
"~ sparse qr_mumpg2]
" no compression, no distributed memory parallelism
" dense HMAT
" relying on the StarPU runtime [5]
" built-in out-of-core capability

multi-

factorization " S is never assembled entirely in memory

" densesolver can start working without waiting foB to
be fully assembled

16



Thank you for attending!

Looking for a post-doctoral research position
(Ph.D. defense expected in January 2023)
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Numerical assessment

Relative error  Eg for the runs of and multi-factorization having the best execution times and for both
solver couplings, MUMPS/HMAT (compressed Schur) and MUMPS/SPIDO (non-compressed Schur). Parallel
runs using 24 threads on single miriel node.
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