
Scaling Stratified Stochastic Gradient Descent for
Distributed Matrix Completion

Nabil Abubaker, M. Ozan Karsavuran and Cevdet Aykanat, “Scaling Stratified Stochastic Gradient Descent for Distributed Matrix
Completion”, IEEE Transactions on Knowledge and Data Engineering, 2023

Code: https://github.com/nfabubaker/CESSGD

Nabil Abubaker

https://github.com/nfabubaker/CESSGD

Scaling Stratified Stochastic Gradient Descent for
Distributed Matrix Completion

Nabil Abubaker, M. Ozan Karsavuran and Cevdet Aykanat, “Scaling Stratified Stochastic Gradient Descent for Distributed Matrix
Completion”, IEEE Transactions on Knowledge and Data Engineering, 2023

Code: https://github.com/nfabubaker/CESSGD

Nabil Abubaker

https://github.com/nfabubaker/CESSGD

SGD for Matrix Completion

R (sparse)W

H^T

Find low-rank approximation R≅WHT

A missing entry rij in R can be approximated (completed)
by rij = wihj

T

Goal:

Using Stochastic Gradient Descent to find W and H that
minimize:

Loss = ∑ (rij - wihj
T)2

By:

wi = wi + 𝝐 ((rij - wihj
T)hj + 𝛾 wi)

hj = hj + 𝝐 ((rij - wihj
T)wi + 𝛾 hj)

How?

Step size Regularization factor

❖ Asynchronous: Allows staleness

❖ Stratified (SSGD): Doesn’t allow staleness
➢ Serializable
➢ Better convergence
➢ Well-studied behaviour

Parallel SGD

Stratified SGD proposed in:
R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale matrix
factorization with distributed stochastic gradient descent,” in Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 69–77, 2011.

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

s1

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

s3

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

s4

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

s1 s2

s3 s4

Ring
Schedule

Or

Ring
Strata

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

s1 s2
H1 H2 H3 H4 H1 H2 H3 H4

Communicate only factor matrix rows that are essential for the correctness of the SGD algorithm using P2P messages

Proposal:

Existing implementations communicate blocks of factor matix rows:

➢ p1 updates block Hj

➢ p1 sends all rows in Hj to the processor that updates it next

➢ Data is sparse → extra unnecessary data movement

Problem with distributed SSGD:

h1 h2 h3 h4 h5

Finding essential communication

/s1

/s4

/s3

/s2

h6

Update order of :
→ → →

hi is sent from px to py if :

→ both px and py update hi and
→ no processor in between does.

According to the update order

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

/s1

/s4

/s3

/s2

What should send after updating ?

/s1

/s4

/s3

/s2

Updated columns

Update order of :
→ → →

Finding essential communication

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h5

h1 h4 h6

h2 h3 h4 h5

h1 h3 h5

/s1

/s4

/s3

/s2

What should send after updating ?

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

Updated columns Updated columns - reordered

Update order of :
→ → →

Finding essential communication

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h3 h4 h5 h6

h1 h2 h5

h1 h4 h6

h2 h3 h4 h5

h1 h3 h5

/s1

/s4

/s3

/s2

What should send after updating ?

/s1

/s4

/s3

/s2

/s1

/s4

/s3

/s2

Updated columns

Update order of :
→ → →

Updated columns - reordered

Finding essential communication

h1 h2 h5

h1 h4 h6

h2 h3 h4 h5

h1 h3 h5

1 1 0 0 1 0

h1 h2 h3 h4 h5 h6

1 0 0 1 0 1

1 0 1 0 1 0

0 1 1 1 1 0

Efficiently finding essential communication

Built up incrementally

Updated by
px AND py

but
not any processor in between

❖ Finding essential communication can be used to send P2P messages.
❖ Invaluable for reducing the volume of communication

❖ Problem: Number of messages significantly increase compared to block-wise communication:
➢ With block-wise: each processor sends 1 msg per sub-epoch; total of K messages per processor.
➢ With P2P, each processor sends up to K-1 msgs per sub-epoch; total of O(K2) messages per processor.

So far:

❖ Finding essential communication can be used to send P2P messages.
❖ Invaluable for reducing the volume of communication

❖ Problem: Number of messages significantly increase compared to block-wise communication:
➢ With block-wise: each processor sends 1 msg per sub-epoch; total of K messages per processor.
➢ With P2P, each processor sends up to K-1 msgs per sub-epoch; total of O(K2) messages per processor.

So far:

Is it possible to exchange the same essential communication with message count asymptotically less than O(K2)

Research Question

❖ Finding essential communication can be used to send P2P messages.
❖ Invaluable for reducing the volume of communication

❖ Problem: Number of messages significantly increase compared to block-wise communication:
➢ With block-wise: each processor sends 1 msg per sub-epoch; total of K messages per processor.
➢ With P2P, each processor sends up to K-1 msgs per sub-epoch; total of O(K2) messages per processor.

So far:

Is it possible to exchange the same essential communication with message count asymptotically less than O(K2)

Research Question

H-matrix rows sent via P2P messages are not always immediately needed in the next sub-epoch.

Key Observation

Key Observation: A closer look

h1 h2 h5

h1 h4 h6

h2 h3 h4 h5

h1 h3 h5

Should arrive before s2,
can only be sent at s1

/s1

/s4

/s3

/s2

h1 h2 h5

h1 h4 h6

h2 h3 h4 h5

h1 h3 h5

Should arrive before s2,
can only be sent at s1

Should arrive before s4,
can be sent at s1, s2 or s3

Key Observation: A closer look

/s1

/s4

/s3

/s2

h1 h2 h5

h1 h4 h6

h2 h3 h4 h5

h1 h3 h5

Should arrive before s2,
can only be sent at s1

Should arrive before s3, can be
sent at s1 or at s2

Should arrive before s4,
can be sent at s1, s2 or s3

Key Observation: A closer look

/s1

/s4

/s3

/s2

The Hold & Combine Algorithm

Schedule of :

Key idea: Hold H-matrix rows to be sent to the same processor at different

sub-epochs and combine/send them in one message

Schedule of :
41 2 3 sub-epochs

Row-blocks updated by at those sub-epochs

The Hold & Combine Algorithm

Key idea: Hold H-matrix rows to be sent to the same processor at different

sub-epochs and combine/send them in one message

Key idea: Hold H-matrix rows to be sent to the same processor at different

sub-epochs and combine/send them in one message

Schedule of :
41 2 3 sub-epochs

Row-blocks updated by at those sub-epochs

Entry (i,j) = at which sub-epoch pi updates Hj

The Hold & Combine Algorithm

2 3 4 1+

2+3 4 1+

3
+

4 1+ 2+

41 2 3
Schedule of :

The Hold & Combine Algorithm

Key idea: Hold H-matrix rows to be sent to the same processor at different

sub-epochs and combine/send them in one message

2 3 4 1+

2+3 4 1+

3
+

4 1+ 2+

41 2 3
Schedule of :

The Hold & Combine Algorithm

Key idea: Hold H-matrix rows to be sent to the same processor at different

sub-epochs and combine/send them in one message

2 3 4 1+

2+3 4 1+

3
+

4 1+ 2+

41 2 3
Schedule of :

The Hold & Combine Algorithm

Key idea: Hold H-matrix rows to be sent to the same processor at different

sub-epochs and combine/send them in one message

2 3 4 1+

2+3 4 1+

3
+

4 1+ 2+

41 2 3
Schedule of :

No H&C: up to 12 messages (N * N-1)
With H&C: up to 8 messages (N * lgN)

The Hold & Combine Algorithm

Key idea: Hold H-matrix rows to be sent to the same processor at different

sub-epochs and combine/send them in one message

2 3 4 1+

2+3 4 1+

3
+

4 1+ 2+

41 2 3

No H&C: up to 12 messages (N * N-1)
With H&C: up to 8 messages (N * lgN)

Schedule of :

The Hold & Combine Algorithm

Key idea: Hold H-matrix rows to be sent to the same processor at different

sub-epochs and combine/send them in one message

2 3 4 1+

2+3 4 1+

3
+

4 1+ 2+

41 2 3

No H&C: up to 12 messages (N * N-1)
With H&C: up to 8 messages (N * lgN)

Schedule of :

The Hold & Combine Algorithm

Key idea: Hold H-matrix rows to be sent to the same processor at different

sub-epochs and combine/send them in one message

Greedy choice: Send each message in the iteration just before it is required →

leads to balanced distribution of messages among sub-epochs

Experiments and Key Results

6 real-world sparse rating matrices. 5M < nnz < 475M nonzeros

In terms of bandwidth:

❖ Using P2P reduces total volume by 10x - 120x (P2P has the same volume with or w/o H&C)

In terms of latency:

❖ Using random-based P2P increases total messages by 3.5x - 57x

❖ Using H&C increases total messages by 3x - 8x

Experiments and Key Results - Cont’d

Experiments and Key Results - Cont’d

Gap
increase

Thank you!

Questions ?

More of SPCL’s research:

… or spcl.ethz.ch

180+ Talksyoutube.com/@spcl

twitter.com/spcl_eth 1.4K+ Followers

github.com/spcl 3.8K+ Stars

spcl.inf.ethz.ch

