

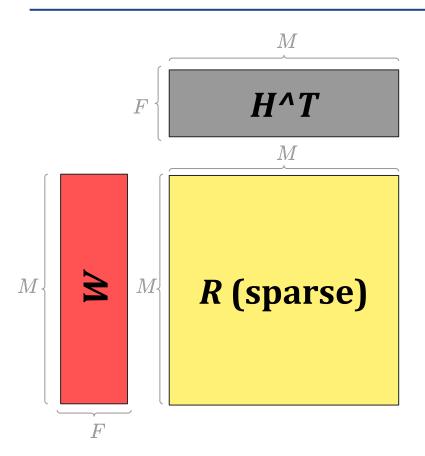
Scaling Stratified Stochastic Gradient Descent for Distributed Matrix Completion

Nabil Abubaker

Nabil Abubaker, M. Ozan Karsavuran and Cevdet Aykanat, "Scaling Stratified Stochastic Gradient Descent for Distributed Matrix Completion", *IEEE Transactions on Knowledge and Data Engineering*, 2023

Code: https://github.com/nfabubaker/CESSGD

Scaling Stratified Stochastic Gradified Scent for Distributed - Efficient Stratified Scent for Communication - Efficient Completion

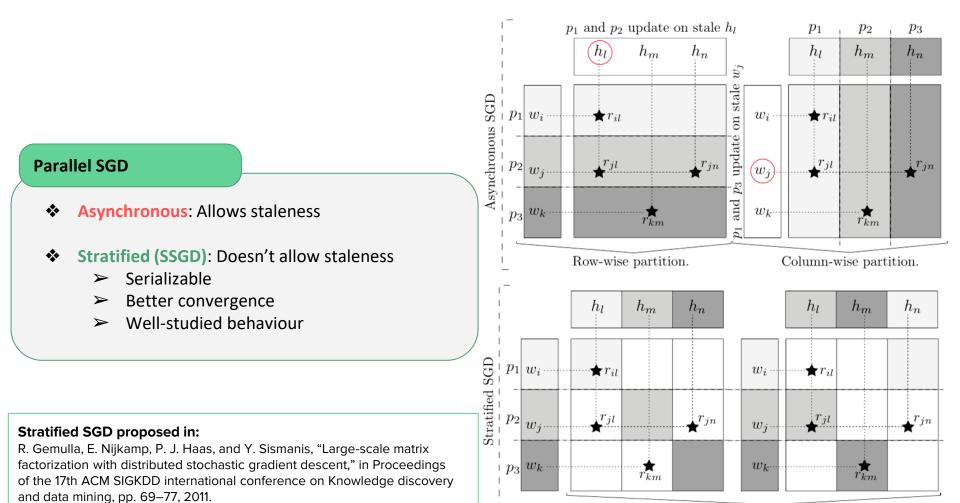

Nabil Abubaker

Nabil Abubaker, M. Ozan Karsavuran and Cevdet Aykanat, "Scaling Stratified Stochastic Gradient Descent for Distributed Matrix Completion", *IEEE Transactions on Knowledge and Data Engineering*, 2023

Code: https://github.com/nfabubaker/CESSGD

SGD for Matrix Completion

Goal:


Find low-rank approximation $\mathbf{R} \cong \mathbf{W}\mathbf{H}^{\mathrm{T}}$

A missing entry r_{ij} in R can be approximated (completed) by $r_{ij} = w_i h_j^T$

How?

Using Stochastic Gradient Descent to find *W* and *H* that minimize:

$$Loss = \sum (\mathbf{r}_{ij} - \mathbf{w}_i \mathbf{h}_j^T)^2$$

By:
$$\mathbf{w}_i = \mathbf{w}_i + \epsilon ((\mathbf{r}_{ij} - \mathbf{w}_i \mathbf{h}_j^T)\mathbf{h}_j + \mathbf{w}_i)$$

$$\mathbf{h}_j = \mathbf{h}_j + \epsilon ((\mathbf{r}_{ij} - \mathbf{w}_i \mathbf{h}_j^T)\mathbf{w}_i + \mathbf{w}_j)$$

Two of three stratums required to complete a DSGD epoch.

p _{1 /s1}	$p_{1/ m s2}$	$p_{1/ m s3}$	$p_{1/s4}$
p_2 /s4	p_2 /s1	p_2 /s2	p_2 /s3
p_3 /s3	$p_3/{ m s4}$	p ₃ /s1	p_3 /s2
p_4 /s2	p_4 /s3	p_4 /s4	p_4 /s1

					S	2	
$p_{1/ m s1}$	$p_{1/ m s2}$	$p_{1/ m s3}$	$p_{1/ m S4}$	$p_{1/{ m s1}}$	$p_{1/ m s2}$	p _{1 /s} 3	$p_{1/ m s4}$
p_2 /s4	p_2 /s1	p_2 /s2	p_2 /s3	p_2 /s4	p_2 /s1	p ₂ /s2	p_2 /s3
p_3 /s3	$p_3/{ m s4}$	p ₃ /s1	p_3 /s2	p_3 /s3	$p_3/{ m s4}$	p_3 /s1	p_3 /s2
p_4 /s2	p_4 /s3	p_4 /s4	p_4 /s1	p_4 /s2	p_4 /s3	p_4 /s4	$p_4/ m s1$

$p_{1/ m s1}$	$p_{1/ m s2}$	$p_{1/ m s3}$	$p_{1/ m S4}$	$p_{1/ m s1}$	$p_{1/ m s2}$	$p_{1/s3}$	$p_{1/ m s4}$
p_2 /s4	p_2 /s1	p_2 /s2	p_2 /s3	p_2 /s4	p_2 /s1	p ₂ /s2	p_2 /s3
p_3 /s3	$p_3/{ m s4}$	p ₃ /s1	p_3 /s2	p_3 /s3	p_3 /s4	$p_3/{ m s1}$	p_3 /s2
p_4 /s2	p_4 /s3	p_4 /s4	$p_4/ ext{s1}$	p_4 /s2	p_4 /s3	p_4 /s4	$p_4/ ext{s1}$
		-					

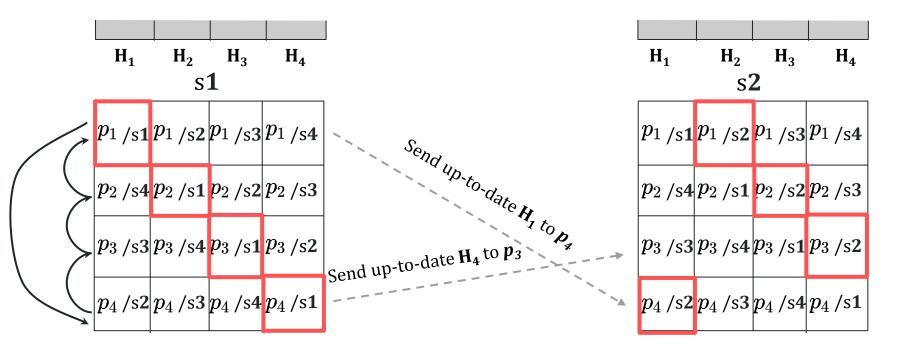
s3									
$p_{1/ m s1}$	$p_{1/ m s2}$	$p_{1/ m s3}$	p_1 /s4						
p_2 /s4	$p_2/{ m s1}$	p_2 /s2	p_2 /s3						
p ₃ /s3	$p_3/{ m s4}$	p_3 /s1	p_3 /s2						
p_4 /s2	p_4 /s3	p ₄ /s4	p_4 /s1						

$p_{1/\mathrm{s1}} p_{1/\mathrm{s2}} p_{1/\mathrm{s3}} p_{1/\mathrm{s4}}$	$p_{1/s1}$	$p_{1/ m s2}$	$p_{1/s3}$	$p_{1/s4}$
p_2 /s4 p_2 /s1 p_2 /s2 p_2 /s3	p_2 /s4	p_2 /s1	p _{2 /s2}	p_2 /s3
p_3 /s3 p_3 /s4 p_3 /s1 p_3 /s2	p_3 /s3	p_3 /s4	$p_3/{ m s1}$	p_3 /s2
p_4 /s2 p_4 /s3 p_4 /s4 p_4 /s1	p_4 /s2	p_4 /s3	p_4 /s4	p_4 /s1
		S	4	
$p_{1/\mathrm{S1}}p_{1/\mathrm{S2}}p_{1/\mathrm{S3}}p_{1/\mathrm{S4}}$	$p_{1/ m s1}$	$p_{1/ m s2}$	$p_{1/ m s3}$	$p_{1/ m s4}$
p_2 /s4 p_2 /s1 p_2 /s2 p_2 /s3	p_2 /s4	p_2 /s1	p_2 /s2	p_2 /s3
p_2 /s4 p_2 /s1 p_2 /s2 p_2 /s3 p_3 /s3 p_3 /s4 p_3 /s1 p_3 /s2		p_2 /s1 p_3 /s4		

	S	1			SZ	2	
$p_{1/ m s1}$	$p_{1/ m s2}$	$p_{1/ m s3}$	$p_{1/s4}$	$p_{1/ m s1}$	$p_{1/ m s2}$	p _{1 /s} 3	$p_{1/ m s4}$
p_2 /s4	p_2 /s1	p ₂ /s2	p_2 /s3	p_2 /s4	p_2 /s1	p ₂ /s2	p_2 /s3
p_3 /s3	p_3 /s4	p ₃ /s1	p_3 /s2	p_3 /s3	p_3 /s4	p_3 /s1	p_3 /s2
$\overline{p_4/ ext{s2}}$	p_4 /s3	p_4 /s4	p_4 /s1	p_4 /s2	p_4 /s3	p_4 /s4	$p_4/ m s1$
	S	3			S	4	
$p_{1/ m s1}$	$p_{1/ m s2}$	$p_{1/ m s3}$	$p_{1/ m s4}$	$p_{1/s1}$	$p_{1/s2}$	$p_{1/ m s3}$	$p_{1/ m s4}$
p_2 /s4	p_2 /s1	p_2 /s2	p_2 /s3	p_2 /s4	p_2 /s1	p_2 /s2	p_2 /s3
p ₃ /s3	p_3 /s4	p_3 /s1	p_3 /s2	p_3 /s3	p_3 /s4	p ₃ /s1	$p_3/{ m s2}$
p_4 /s2	p_4 /s3	p_4 /s4	p_4 /s1	p_4 /s2	p_4 /s3	p_4 /s4	p_4 /s1

Ring

Or

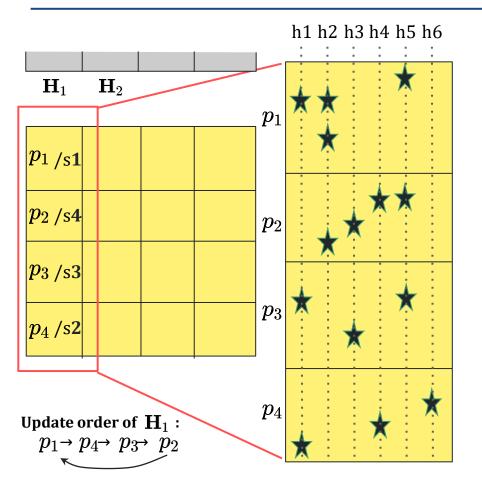

Ring Strata

. .

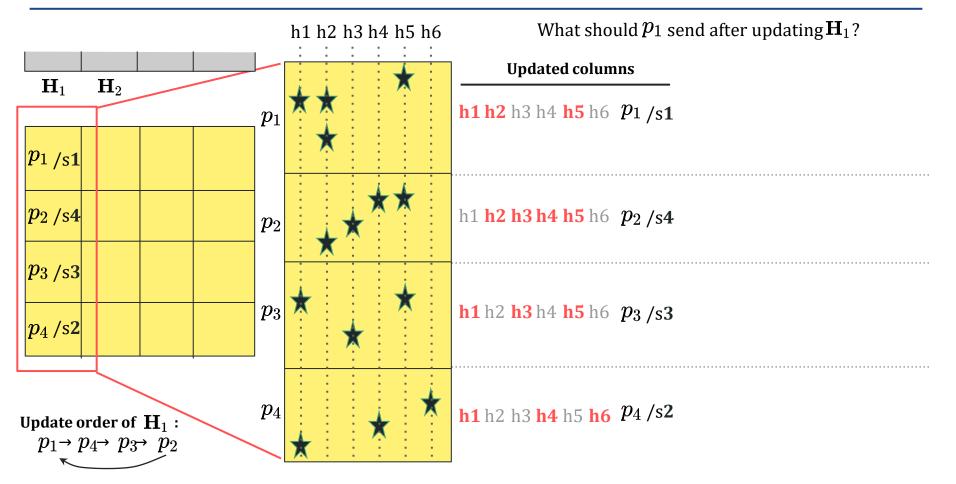
10 A.

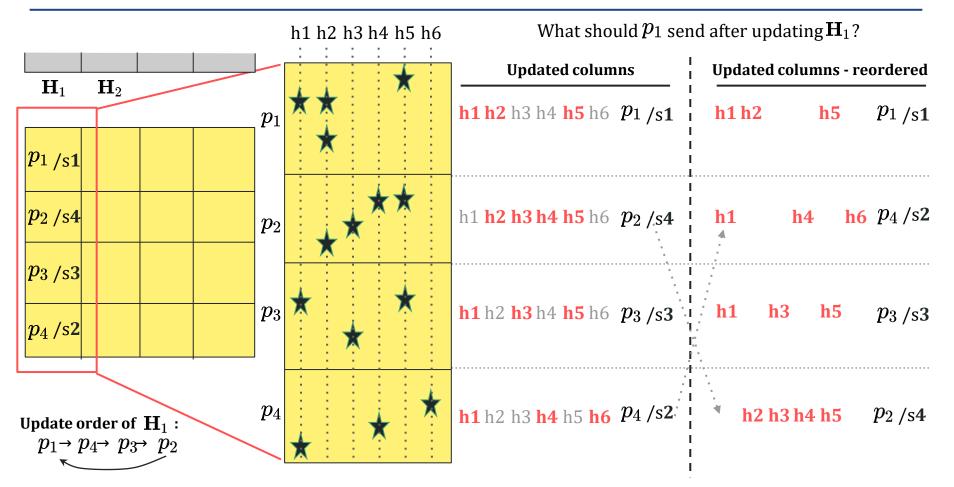
Schedule

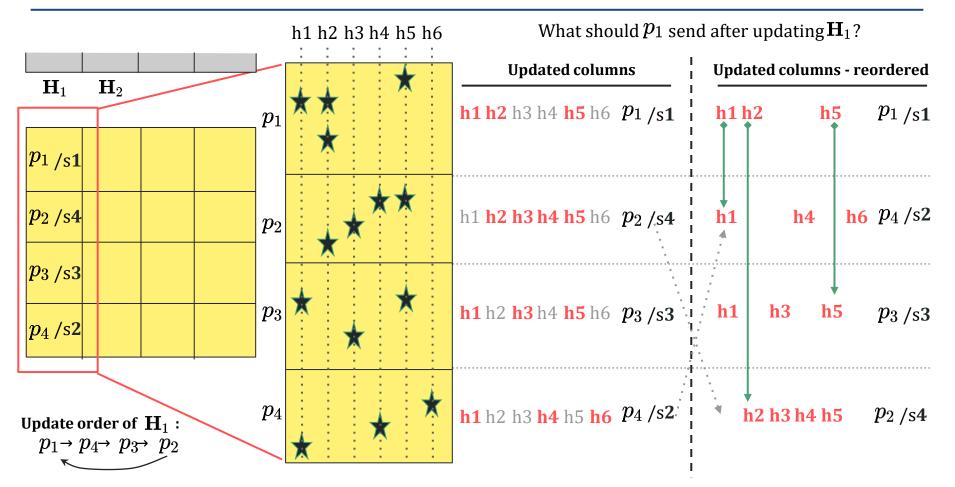
.

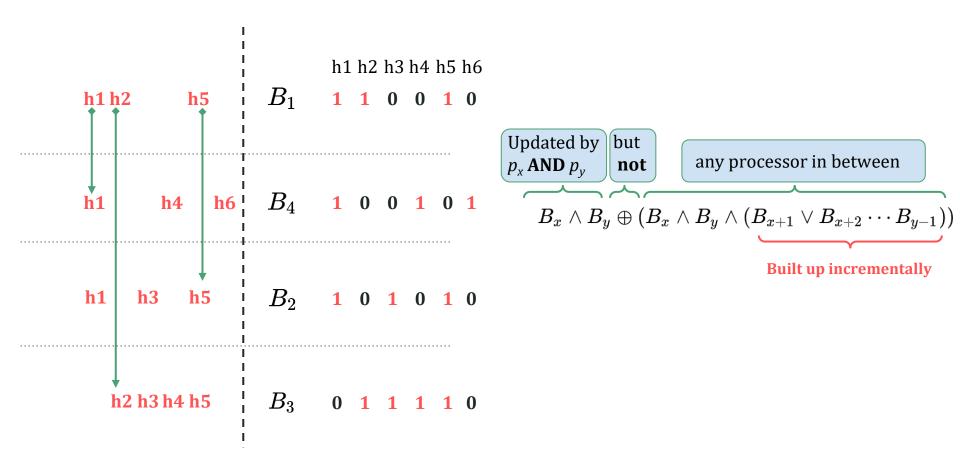


Existing implementations communicate **blocks** of factor matix rows:


- ▶ p₁ updates block H_j
- \succ **p**₁ sends **all rows in H**_i to the processor that updates it next
- ➤ Data is sparse → extra unnecessary data movement


Proposal:


Communicate only factor matrix rows that are essential for the correctness of the SGD algorithm using P2P messages



Efficiently finding essential communication

So far:

- Finding essential communication can be used to send P2P messages.
- Invaluable for reducing the volume of communication
- **Problem:** Number of messages significantly increase compared to block-wise communication:
 - ▶ With block-wise: each processor sends 1 msg per sub-epoch; total of K messages per processor.
 - \succ With P2P, each processor sends up to K-1 msgs per sub-epoch; total of $O(K^2)$ messages per processor.

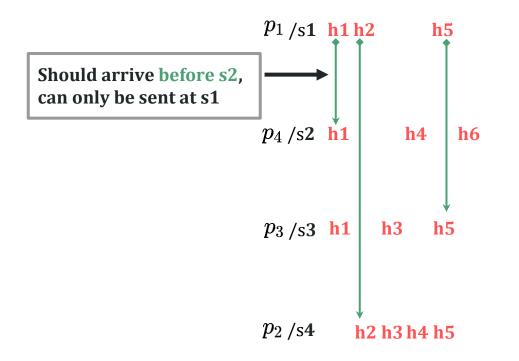
So far:

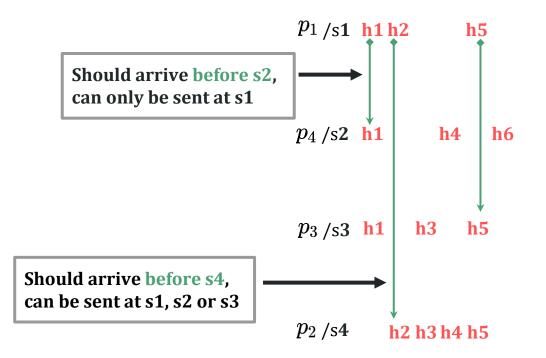
- Finding essential communication can be used to send P2P messages.
- Invaluable for reducing the volume of communication
- **Problem:** Number of messages significantly increase compared to block-wise communication:
 - ▶ With block-wise: each processor sends 1 msg per sub-epoch; total of K messages per processor.
 - \succ With P2P, each processor sends up to K-1 msgs per sub-epoch; total of $O(K^2)$ messages per processor.

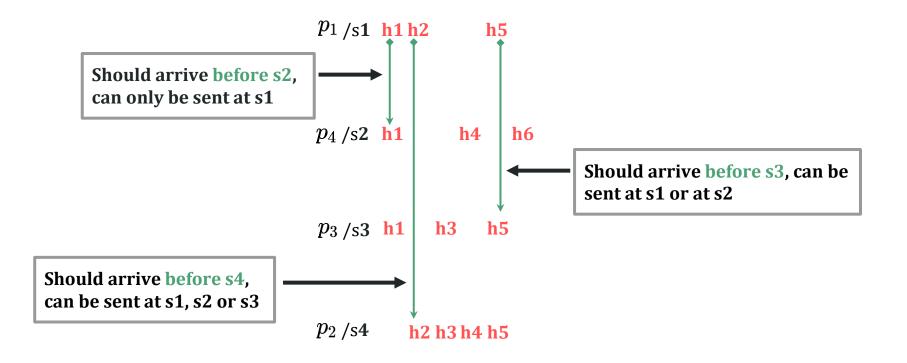
Research Question

Is it possible to exchange the same essential communication with message count asymptotically less than $O(K^2)$

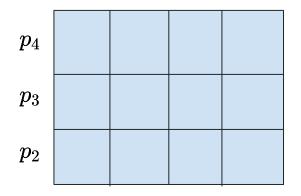
So far:

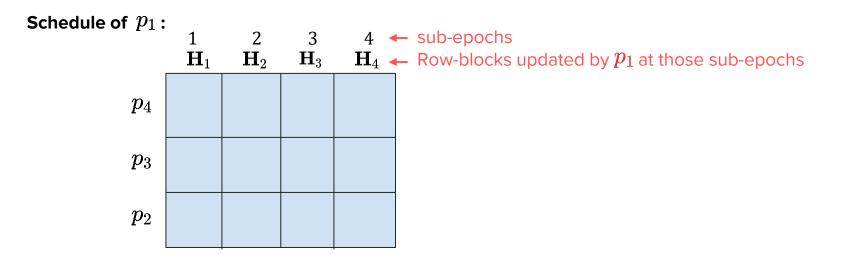

- Finding essential communication can be used to send P2P messages.
- Invaluable for reducing the volume of communication
- **Problem:** Number of messages significantly increase compared to block-wise communication:
 - ▶ With block-wise: each processor sends 1 msg per sub-epoch; total of K messages per processor.
 - \succ With P2P, each processor sends up to K-1 msgs per sub-epoch; total of $O(K^2)$ messages per processor.

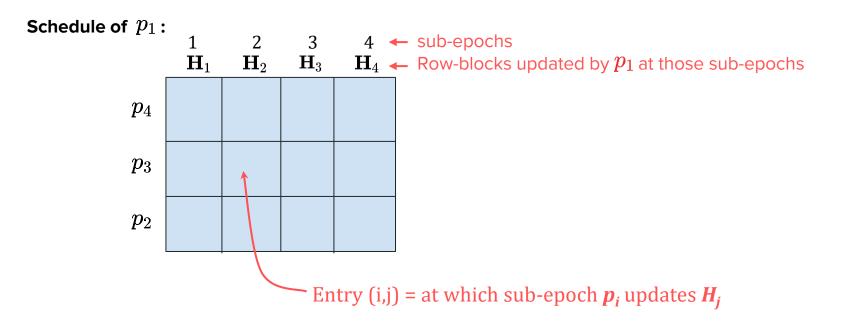

Research Question


Is it possible to exchange the same essential communication with message count asymptotically less than $O(K^2)$

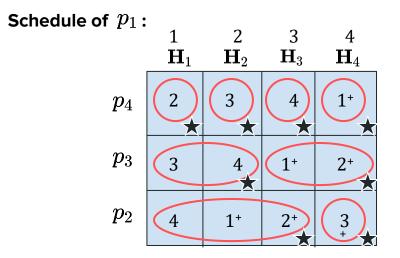
Key Observation

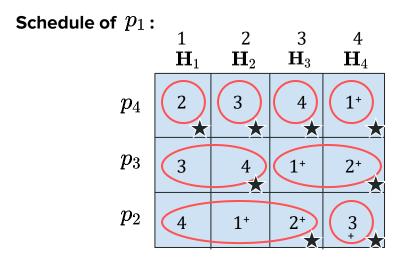

H-matrix rows sent via P2P messages are not always immediately needed in the next sub-epoch.

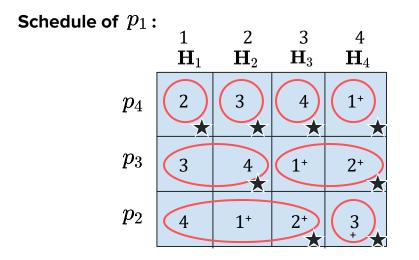




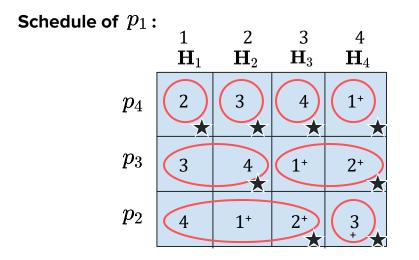
Schedule of p_1 :



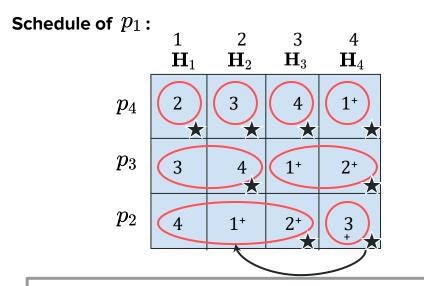




p_1 :	$egin{array}{c} 1 \ \mathbf{H}_1 \end{array}$	\mathbf{H}_{2}^{2}	${}^3_{{f H}_3}$	$\begin{array}{c} 4 \\ \mathbf{H}_4 \end{array}$
p_4	2	3	4	1+
p_3	3	4	1+	2+
p_2	4	1+	2+	3+



$$\sum_{i=1}^{rac{K}{2}} 2 + \sum_{i=1}^{rac{K-1}{2}} rac{K}{i}$$


$$\sum_{i=1}^{rac{K}{2}} 2 + \sum_{i=1}^{rac{K-1}{2}} rac{K}{i}$$

No H&C: up to 12 messages (N * N-1) With H&C: up to 8 messages (N * lgN)

$$\sum_{i=1}^{rac{K}{2}} 2 + \sum_{i=1}^{rac{K-1}{2}} rac{K}{i}$$

No H&C: up to 12 messages (N * N-1) With H&C: up to 8 messages (N * lgN)

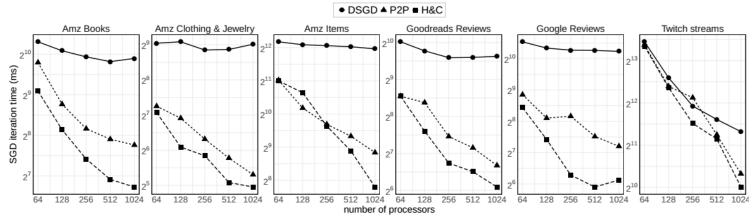
$$\sum_{i=1}^{rac{K}{2}} 2 + \sum_{i=1}^{rac{K-1}{2}} rac{K}{i}$$

No H&C: up to 12 messages (N * N-1) With H&C: up to 8 messages (N * lgN)

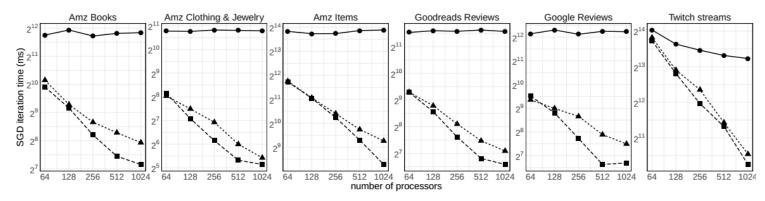
Greedy choice: Send each message in the iteration just before it is required → leads to balanced distribution of messages among sub-epochs

Experiments and Key Results

6 real-world sparse **rating** matrices. 5M < nnz < 475M nonzeros

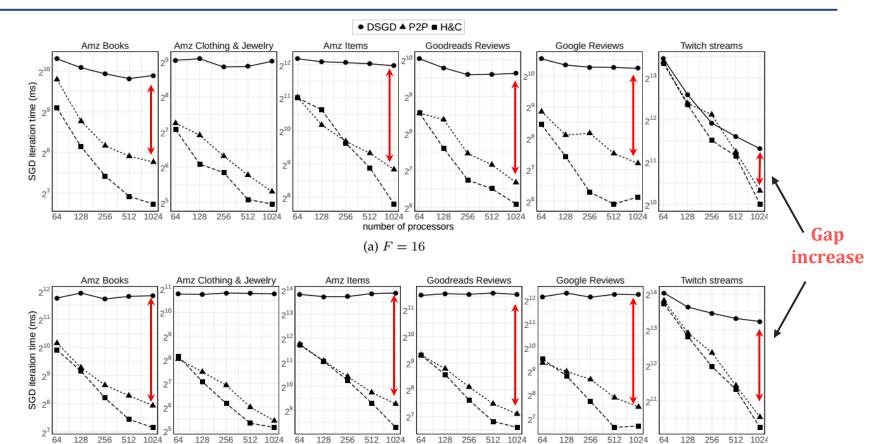

In terms of bandwidth:

◆ Using P2P reduces total volume by **10x** - **120x** (P2P has the same volume with or w/o H&C)


In terms of latency:

- ◆ Using random-based P2P **increases** total messages by **3.5x 57x**
- Using H&C increases total messages by 3x 8x

Experiments and Key Results - Cont'd



(a) F = 16

(b) F = 64

Experiments and Key Results - Cont'd

number of processors

(b) F = 64

Thank you!

Questions?

More of SPCL's research:

... or <u>spcl.ethz.ch</u>

