
Samuel Rodriguez, Anton Anders, Kirill Voronin, Alexander Kalinkin

ACCELERATING SPARSE DIRECT
SOLVERS: STRATEGIES FOR
HIGH PERFORMANCE ON
NVIDIA GPUS

2NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

Ø Goal: unlock the potential of NVIDIA GPU HW for solving (large) sparse linear systems with direct methods and prove wrong the
conventional wisdom “GPU is not good for direct linear solvers” by utilizing both high memory bandwidth and compute power of
GPU

Ø Eternal question: direct or iterative methods? Answer: depends on the app

Ø Current state: standalone CUDA Math library supporting

Ø fp32/fp64 real/complex matrices + int32 indexing, all matrix types, different reordering schemes, pivoting controls, output stats

Ø Linux + x86, Linux + SBSA (Grace), Windows + x86

Ø Customers from application domains: circuit/aerospace/CFD simulations, SLAM, robotics, autonomous driving, CAE and more

What is it?

CUDA DIRECT SPARSE SOLVER

3 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

CUDA DIRECT SPARSE SOLVER
Algorithm Overview

Phase 1: Reordering
Representing initial matrix as a

binary graph to extract more
parallelism and reduce memory

requirements.

Phase 2: Factorization
Factorizing reordered matrix as A =

LU (lower triangular x upper
triangular matrices)

Simple factorization scheme that consists of
3 main workloads:
1) factorization of the diagonal block
2) TRSM for sub-diagonal blocks
3) GEMM to update next blocks

Phase 3: Solving
Solving the equivalent system with
lower and upper triangular factors

Perform forward and backward substitutions with triangular matrices
L and U. Optionally it can include iterative refinement process using

factorized matrix as a preconditioner.

4 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

CUDA DIRECT SPARSE SOLVER
Performance overview

Ø 273 symmetric and non-symmetric matrices from Florida Collection (double precision)
Ø N from 5K to 4.6M, NNZ from 500K to 45M
Ø Performance summary

Ø Reordering: Geomean = 1.2; Speed up: MAX = 5.5, MIN = 0.36; cuDSS faster in 53% of cases
Ø Factorization: Geomean = 1.9; Speed up: MAX = 70, MIN = 0.52; cuDSS faster in 76% of cases
Ø Solve: Geomean = 2.7; Speed up: MAX = 45, MIN = 0.41; cuDSS faster in 92% of cases

5 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

CUDA DIRECT SPARSE SOLVER
Performance overview

Ø A symmetric matrix from non-linear LP solver
Ø N = 6M, NNZ = 33M

6 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

CUDA DIRECT SPARSE SOLVER
Performance overview

Ø Symmetric indefinite matrices (double precision)
Ø Solve up to N = 65M and ~2200GB for L matrix. ~40GB per GPU (128 GPUs in total)
Ø Sequential reordering (MetisND)
Ø Distributed symbolic factorization, numeric factorization and solve

7 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

SCALING BEYOND AN SM
Eliminating kernel launch overhead

8 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

SCALING BEYOND AN SM
Eliminating kernel launch overhead

9 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

INTER-CTA SYNCRHONIZATION
Scaling beyond CGA

Ø Producer-consumer implemented in GPU kernel.

Ø Reduces kernel launch overhead; single kernel.

Ø Further optimizations are possible. Example; prefetching data to shared memory while waiting, static sizes, etc

10 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

DEVICE EXTENSIONS LIBRARIES
Device-instantiated cuBLAS-like performance

11 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

CUDA DIRECT SPARSE SOLVER

Ø GA release (1.0.0): later this year

Ø Functionality:

Ø Matching + Scaling

Ø Schur complement

Ø QR factorization

Ø Batch API

Ø Performance optimizations for customer use cases

Ø Python enablement

Ø Distribution: + pip wheels, conda

Future outlook

12 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

ACTIVE LINES OF RESEARCH

Ø FP64 emulation

Ø GPU-only fill-in reorderings

Ø SDDMM

And opportunities for collaboration!

