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Ø Goal: unlock the potential of NVIDIA GPU HW for solving (large) sparse linear systems with direct methods and prove wrong the
conventional wisdom “GPU is not good for direct linear solvers” by utilizing both high memory bandwidth and compute power of 
GPU

Ø Eternal question: direct or iterative methods? Answer: depends on the app

Ø Current state: standalone CUDA Math library supporting

Ø fp32/fp64 real/complex matrices + int32 indexing, all matrix types, different reordering schemes, pivoting controls, output stats

Ø Linux + x86, Linux + SBSA (Grace), Windows + x86

Ø Customers from application domains: circuit/aerospace/CFD simulations, SLAM, robotics, autonomous driving, CAE and more

What is it?

CUDA DIRECT SPARSE SOLVER
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CUDA DIRECT SPARSE SOLVER
Algorithm Overview

Phase 1: Reordering
Representing initial matrix as a 

binary graph to extract more 
parallelism and reduce memory 

requirements.

Phase 2: Factorization
Factorizing reordered matrix as A = 

LU (lower triangular x upper 
triangular matrices)

Simple factorization scheme that consists of 
3 main workloads: 
1) factorization of the diagonal block
2) TRSM for sub-diagonal blocks
3) GEMM to update next blocks

Phase 3: Solving
Solving the equivalent system with 
lower and upper triangular factors

Perform forward and backward substitutions with triangular matrices 
L and U. Optionally it can include iterative refinement process using 

factorized matrix as a preconditioner.
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CUDA DIRECT SPARSE SOLVER
Performance overview

Ø 273 symmetric and non-symmetric matrices from Florida Collection (double precision)
Ø N from 5K to 4.6M, NNZ from 500K to 45M 
Ø Performance summary

Ø Reordering:  Geomean = 1.2; Speed up: MAX = 5.5, MIN = 0.36; cuDSS faster in 53% of cases
Ø Factorization: Geomean = 1.9; Speed up: MAX = 70,  MIN = 0.52; cuDSS faster in 76% of cases
Ø Solve:  Geomean = 2.7; Speed up: MAX = 45,  MIN = 0.41; cuDSS faster in 92% of cases
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CUDA DIRECT SPARSE SOLVER
Performance overview

Ø A symmetric matrix from non-linear LP solver
Ø N = 6M, NNZ = 33M



6 NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

CUDA DIRECT SPARSE SOLVER
Performance overview

Ø Symmetric indefinite matrices (double precision)
Ø Solve up to N = 65M and ~2200GB for L matrix. ~40GB per GPU (128 GPUs in total)
Ø Sequential reordering (MetisND)
Ø Distributed symbolic factorization, numeric factorization and solve
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SCALING BEYOND AN SM
Eliminating kernel launch overhead
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SCALING BEYOND AN SM
Eliminating kernel launch overhead
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INTER-CTA SYNCRHONIZATION
Scaling beyond CGA

Ø Producer-consumer implemented in GPU kernel. 

Ø Reduces kernel launch overhead; single kernel.

Ø Further optimizations are possible. Example; prefetching data to shared memory while waiting, static sizes, etc
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DEVICE EXTENSIONS LIBRARIES
Device-instantiated cuBLAS-like performance
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CUDA DIRECT SPARSE SOLVER

Ø GA release (1.0.0): later this year

Ø Functionality:

Ø Matching + Scaling

Ø Schur complement

Ø QR factorization

Ø Batch API

Ø Performance optimizations for customer use cases

Ø Python enablement

Ø Distribution: + pip wheels, conda

Future outlook
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ACTIVE LINES OF RESEARCH

Ø FP64 emulation

Ø GPU-only fill-in reorderings

Ø SDDMM

And opportunities for collaboration!




