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Monte Carlo estimator

Let Y be a random variable whose expectation µ = E[Y ] we want
to estimate. To do so we have access to an ensemble of M
realisations of Y and we can compute a Monte Carlo estimator:

µ̂ =
1

M

M∑
i=1

Y (i).

But if you have access to ensembles of realisations of
different fidelity you may want to try multilevel Monte Carlo
methods.

Michael B. Giles, Multilevel Monte Carlo methods, Acta Numerica 24 (2015), 259–328
(en), doi : 10.1017/S096249291500001X
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Multilevel Monte Carlo estimation of expectation

Suppose we have different fidelity ensembles (denoted with the
subscript ℓ). Then the MLMC estimator of µ = E[Y ] is:

µ̂MLMC
L = µ̂

(0)
0 +

L∑
ℓ=1

(
µ̂
(ℓ)
ℓ − µ̂

(ℓ)
ℓ−1

)

with µ̂
(ℓ′)
ℓ a Monte Carlo estimator based on an Mℓ′ sample of Yℓ.

The ensembles used in a correction term are based on the
same stochastic inputs.
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Context

We have the different fidelity models fℓ each working on an
associated grid of size nℓ (with nL > nL−1 > · · · > n0)

fℓ : Rnℓ 7→ Rnℓ ℓ = 0, . . . , L.

Let Xℓ be a random vector of size nℓ, we denote

Yℓ := fℓ(Xℓ)

the random vector, also of size nℓ, output of fℓ.

We want to estimate µ := E[YL] with a MLMC estimator.

⇒ Impossible due to the inconsistent dimensions across levels.
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Transfer operators

⇒ We need operators to transfer signals from a grid to
another one. Let us choose here linear operators R and P.

The 2-level MLMC estimator is:

µ̂MLMC
1 =

1

M0

M0∑
i=1

Pf0(RX
(0,i)
1 )+

1

M1

M1∑
i=1

f1(X
(1,i)
1 )−Pf0(RX

(1,i)
1 ).
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Diffusion in oceanography

In oceanography, the diffusion equation can be used as a
correlation model:

∂u

∂t
= κ∆u, with u(x, 0) = u0(x).

κ is the diffusivity field. A normalisation step is required afterward
to regain the lost amplitude.

Diffusion Normalisation

A filtered multilevel Monte Carlo method for the estimation of discretized random fields. 9/31



Estimation of normalization coefficients

Let X ∼ N (0n, In) be a random discretized field and f the
diffusion model. The normalization coefficients can be estimated
using a Monte Carlo method:

µ̂ =
1

M

M∑
i=1

f(X(i)) ◦ f(X(i)),

with ◦ being the Schur product.

⇒ MLMC estimator should lead to a better estimation.

A filtered multilevel Monte Carlo method for the estimation of discretized random fields. 10/31



Transfer operators

For this problem the values of the discretized fields are defined at
the center of grid cells. The grids are 2D and of size 128× 256,
64×128, 32×64 and 16×32. The (very simple) transfer operators
chosen for the MLMC estimator have the following stencil

R =
1

2

 1 1
∗

1 1

2h

h

and P =

 1 1
∗

1 1

h

2h

.

A filtered multilevel Monte Carlo method for the estimation of discretized random fields. 11/31



Reference and MC estimation

Figure: The exact field of normalisation coefficients computed explicitly
for a given diffusivity tensor κ and a MC estimation computed from 100
samples.
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MLMC estimation

Figure: 4 levels MLMC estimation computed with the same budget as a
100 samples MC.

⇒ When looking at the total MSE of the MLMC it is much better
than the MC estimator.
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Motivation

Why performing a spectral analysis ?

▶ Total MSE is a scalar error ⇒ limited for estimation of
discretized fields;

▶ Is the error different among the scales ?

▶ Explaining the interferences on the MLMC estimation;

▶ Understanding the effects of the restriction operator R and
the prolongation operator P.

To conduct such an analysis we consider a Hartley basis H of the
spectral space.

A filtered multilevel Monte Carlo method for the estimation of discretized random fields. 15/31



Restriction effects

When restricting a high frequency signal to a coarse grid where it
cannot be represented it will appear as a low frequency signal.
⇒ Error brought on the low frequencies (aliasing).
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Figure: The 13th column of H on a grid of size 16 (orange), and its
restriction on a grid of size 8 (blue).
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Prolongation effects

When prolongating a signal, another high frequency term will
appear.
⇒ Bad estimation of high frequencies.
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Figure: The 2nd column of H on a grid of size 8 (blue), and its
prolongation on a grid of size 16 (orange).
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Spectral decomposition of the variance

(a) Spectral decomposition of the
variance of MC and MLMC estimators
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(b) Cumulative variance of MLMC
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Adding smoothers

Idea: filtering the high frequencies when transferring discretized
fields from a grid to another with smoother operators. A
second-order Shapiro filter with the following stencil for example:

1

4

1/16 1/8 1/16
1/8 1/4 1/8
1/16 1/8 1/16

 .

If we denote S the smoother operator used we would have:

Y = SPf0(RSX).

Ralph Shapiro, Smoothing, filtering, and boundary effects, Reviews of Geophysics 8
(1970), no. 2, 359–387 (en), doi: 10.1029/RG008i002p00359
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Filtered MLMC (F-MLMC) estimation

Figure: The exact normalization coefficients and a 4-levels F-MLMC
estimation computed with the same budget as a 100 samples MC.
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Filtered MLMC (F-MLMC) estimation

(a) Spectral decomposition of the
variance of MC and F-MLMC
estimators
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(b) Cumulative variance of MC,
MLMC and F-MLMC estimator
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Choice of operators

Two estimators tested:

▶ the MLMC estimator with Yℓ = Pfℓ(RX).

▶ the F-MLMC estimator with Yℓ = SPfℓ(RSX),

The F-MLMC can reach much lower variance.

⇒ Results depends a lot on chosen P and R.

Problematic
How can one choose the best P and R (or the smoothing operator
S) such that the variance of the MLMC estimator is minimized ?
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Choice of operators

Problematic
How can one choose the best P and R (or the smoothing operator
S) such that the variance of the MLMC estimator is minimized ?

▶ Testing different smoothing operators (2nd order Shapiro, 4th
order Shapiro, iterative Shapiro, ...).

▶ Choosing the operators based on their order compared to the
order of the models fℓ.

▶ Using estimators similar to the Multilevel Best Linear
Unbiased Estimator (MBLUE).

Daniel Schaden and Elisabeth Ullmann, On Multilevel Best Linear Unbiased
Estimators, SIAM/ASA Journal on Uncertainty Quantification 8 (2020), no. 2,
601–635
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Weighted-MLMC estimator

The WMLMC estimator is

µ̂WMLMC
L = β0µ̂

(0)
0 +

L∑
ℓ=1

(
βℓµ̂

(ℓ)
ℓ − βℓ−1µ̂

(ℓ)
ℓ−1

)
where {βℓ}Lℓ=0 are scalar weights with βL = 1 (for the
unbiasedness constraint).

A formula to find the optimal weights {βℓ}Lℓ=0 that minimize the
variance of the estimator is known.

Vincent Lemaire and Gilles Pagès, Multilevel Richardson–Romberg extrapolation,
Bernoulli 23 (2017), no. 4A, 2643–2692
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Use of WMLMC estimator

If we impose P = αRT, by linearity, the F-MLMC estimator can
be written

µ̂F-MLMC
L = αLµ̂

(0)
0 +

L∑
ℓ=1

(
αL−ℓµ̂

(ℓ)
ℓ − αL−ℓ+1µ̂

(ℓ)
ℓ−1

)
.

⇒ It is a WMLMC estimator with weights {αL−ℓ}Lℓ=0.

Using the formulas to find the optimal weights will give us the
optimal α used to define P. Previously, we used α = 1/

√
2.
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Results of WMLMC

Poids optimaux {βℓ}Lℓ=0 de l’estimateur WMLMC

ℓ 1/
√
2
5−ℓ

L = 1 L = 2 L = 3 L = 4 L = 5

0 0.1768 / / / / 0.1727
1 0.25 / / / 0.2497 0.2525
2 0.3536 / / 0.3538 0.3558 0.3565
3 0.5 / 0.5000 0.5005 0.5013 0.5015
4 0.7071 0.7043 0.7060 0.7067 0.7072 0.7073
5 1 1 1 1 1 1

Table: Optimal weights {βℓ}Lℓ=0 obtained by the WMLMC estimator. The
first column is the weights {αL−ℓ}Lℓ=0 used previously for the F-MLMC.
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Recap

▶ In many geoscience applications, we want to estimate the
expectation of a random discretized fields and the different
fidelity levels come from grids of different resolution;

▶ MLMC for random discretized fields estimation usually
requires grid transfer operators;

▶ The small scales are not well-estimated and introduce errors
all across the spectrum;

▶ A smoothing step is essential to improve the accuracy of
the estimation.

▶ Some estimators may help in choosing the optimal operators
(the WMLMC for example).
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