

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

A filtered multilevel Monte Carlo method for the estimation of discretized random fields. Sparse Days 2024

TIRIT

J. Briant^{1,2,3}, M. Destouches¹, S. Gratton^{3,4}, S. Gürol^{1,2} P. Mycek^{1,2}, E. Simon^{3,4}, A. Weaver^{1,2}

¹ Cerfacs, ² CECI-CNRS, ³ IRIT-CNRS, ⁴ Université de Toulouse

www.cerfacs.fr

CNrs

1. MLMC for the expectation of random variables

- 2. MLMC for the expectation of discretized random fields
- 3. Application
- 4. Spectral analysis of MLMC
- 5. Filtered MLMC
- 6. Choice of operators
- 7. Conclusion

Monte Carlo estimator

Let Y be a random variable whose expectation $\mu = \mathbb{E}[Y]$ we want to estimate. To do so we have access to an ensemble of M realisations of Y and we can compute a Monte Carlo estimator:

$$\hat{\mu} = \frac{1}{M} \sum_{i=1}^{M} Y^{(i)}.$$

Monte Carlo estimator

Let Y be a random variable whose expectation $\mu = \mathbb{E}[Y]$ we want to estimate. To do so we have access to an ensemble of M realisations of Y and we can compute a Monte Carlo estimator:

$$\hat{\mu} = \frac{1}{M} \sum_{i=1}^{M} Y^{(i)}.$$

But if you have access to ensembles of realisations of different fidelity you may want to try multilevel Monte Carlo methods.

Michael B. Giles, *Multilevel Monte Carlo methods*, Acta Numerica **24** (2015), 259–328 (en), doi : 10.1017/S096249291500001X

Suppose we have different fidelity ensembles (denoted with the subscript ℓ). Then the MLMC estimator of $\mu = \mathbb{E}[Y]$ is:

$$\hat{\mu}_{L}^{\mathsf{MLMC}} = \hat{\mu}_{0}^{(0)} + \sum_{\ell=1}^{L} \left(\hat{\mu}_{\ell}^{(\ell)} - \hat{\mu}_{\ell-1}^{(\ell)} \right)$$

with $\hat{\mu}_{\ell}^{(\ell')}$ a Monte Carlo estimator based on an $M_{\ell'}$ sample of $Y_{\ell}.$

Suppose we have different fidelity ensembles (denoted with the subscript ℓ). Then the MLMC estimator of $\mu = \mathbb{E}[Y]$ is:

$$\hat{\mu}_{L}^{\mathsf{MLMC}} = \hat{\mu}_{0}^{(0)} + \sum_{\ell=1}^{L} \left(\hat{\mu}_{\ell}^{(\ell)} - \hat{\mu}_{\ell-1}^{(\ell)} \right)$$

with $\hat{\mu}_{\ell}^{(\ell')}$ a Monte Carlo estimator based on an $M_{\ell'}$ sample of Y_{ℓ} .

The ensembles used in a correction term are based on the same stochastic inputs.

1. MLMC for the expectation of random variables

2. MLMC for the expectation of discretized random fields

3. Application

- 4. Spectral analysis of MLMC
- 5. Filtered MLMC
- 6. Choice of operators

7. Conclusion

We have the different fidelity models f_{ℓ} each working on an associated grid of size n_{ℓ} (with $n_L > n_{L-1} > \cdots > n_0$)

$$f_{\ell} \colon \mathbb{R}^{n_{\ell}} \mapsto \mathbb{R}^{n_{\ell}} \quad \ell = 0, \dots, L.$$

Let \mathbf{X}_{ℓ} be a random vector of size n_{ℓ} , we denote

 $\mathbf{Y}_{\ell} := f_{\ell}(\mathbf{X}_{\ell})$

the random vector, also of size n_{ℓ} , output of f_{ℓ} .

We have the different fidelity models f_{ℓ} each working on an associated grid of size n_{ℓ} (with $n_L > n_{L-1} > \cdots > n_0$)

$$f_{\ell} \colon \mathbb{R}^{n_{\ell}} \mapsto \mathbb{R}^{n_{\ell}} \quad \ell = 0, \dots, L.$$

Let \mathbf{X}_{ℓ} be a random vector of size n_{ℓ} , we denote

 $\mathbf{Y}_{\ell} := f_{\ell}(\mathbf{X}_{\ell})$

the random vector, also of size n_{ℓ} , output of f_{ℓ} .

We want to estimate $\mu := \mathbb{E}[\mathbf{Y}_L]$ with a MLMC estimator.

We have the different fidelity models f_{ℓ} each working on an associated grid of size n_{ℓ} (with $n_L > n_{L-1} > \cdots > n_0$)

$$f_{\ell} \colon \mathbb{R}^{n_{\ell}} \mapsto \mathbb{R}^{n_{\ell}} \quad \ell = 0, \dots, L.$$

Let \mathbf{X}_{ℓ} be a random vector of size n_{ℓ} , we denote

 $\mathbf{Y}_{\ell} := f_{\ell}(\mathbf{X}_{\ell})$

the random vector, also of size n_{ℓ} , output of f_{ℓ} .

We want to estimate $\mu := \mathbb{E}[\mathbf{Y}_L]$ with a MLMC estimator.

 \Rightarrow Impossible due to the inconsistent dimensions across levels.

\Rightarrow We need operators to transfer signals from a grid to another one. Let us choose here linear operators **R** and **P**.

\Rightarrow We need operators to transfer signals from a grid to another one. Let us choose here linear operators R and P.

The 2-level MLMC estimator is:

$$\hat{\boldsymbol{\mu}}_{1}^{\mathsf{MLMC}} = \frac{1}{M_{0}} \sum_{i=1}^{M_{0}} \mathbf{P} f_{0}(\mathbf{RX}_{1}^{(0,i)}) + \frac{1}{M_{1}} \sum_{i=1}^{M_{1}} f_{1}(\mathbf{X}_{1}^{(1,i)}) - \mathbf{P} f_{0}(\mathbf{RX}_{1}^{(1,i)}).$$

- 1. MLMC for the expectation of random variables
- 2. MLMC for the expectation of discretized random fields

3. Application

- 4. Spectral analysis of MLMC
- 5. Filtered MLMC
- 6. Choice of operators

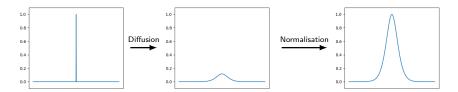
7. Conclusion

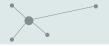
Diffusion in oceanography

In oceanography, the diffusion equation can be used as a correlation model:

$$\frac{\partial u}{\partial t} = \kappa \Delta u$$
, with $u(x,0) = u_0(x)$.

 κ is the diffusivity field. A normalisation step is required afterward to regain the lost amplitude.





Let $\mathbf{X} \sim \mathcal{N}(\mathbf{0}_n, \mathbf{I}_n)$ be a random discretized field and f the diffusion model. The normalization coefficients can be estimated using a Monte Carlo method:

$$\hat{\boldsymbol{\mu}} = \frac{1}{M} \sum_{i=1}^{M} f(\mathbf{X}^{(i)}) \circ f(\mathbf{X}^{(i)}),$$

with \circ being the Schur product.

 \Rightarrow MLMC estimator should lead to a better estimation.

For this problem the values of the discretized fields are defined at the center of grid cells. The grids are 2D and of size 128×256 , 64×128 , 32×64 and 16×32 . The (very simple) transfer operators chosen for the MLMC estimator have the following stencil

$$\mathbf{R} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ * & \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2h \\ & \text{and} & \mathbf{P} = \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ * & \\ 1 & 1 \end{bmatrix} \begin{bmatrix} h \\ & \\ 2h \end{bmatrix}$$

Reference and MC estimation

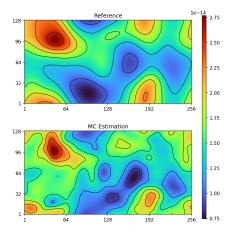


Figure: The exact field of normalisation coefficients computed explicitly for a given diffusivity tensor κ and a MC estimation computed from 100 samples.

MLMC estimation

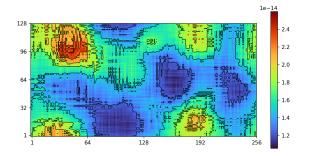


Figure: 4 levels MLMC estimation computed with the same budget as a 100 samples MC.

 \Rightarrow When looking at the total MSE of the MLMC it is much better than the MC estimator.

14/31

- 1. MLMC for the expectation of random variables
- 2. MLMC for the expectation of discretized random fields
- 3. Application
- 4. Spectral analysis of MLMC
- 5. Filtered MLMC
- 6. Choice of operators

7. Conclusion

Why performing a spectral analysis ?

- ► Total MSE is a scalar error ⇒ limited for estimation of discretized fields;
- Is the error different among the scales ?
- Explaining the interferences on the MLMC estimation;
- Understanding the effects of the restriction operator R and the prolongation operator P.

To conduct such an analysis we consider a Hartley basis ${\bf H}$ of the spectral space.

Restriction effects

When restricting a high frequency signal to a coarse grid where it cannot be represented it will appear as a low frequency signal. \Rightarrow Error brought on the low frequencies (aliasing).

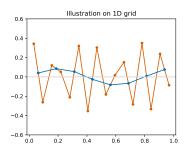


Figure: The 13th column of \mathbf{H} on a grid of size 16 (orange), and its restriction on a grid of size 8 (blue).

Prolongation effects

When prolongating a signal, another high frequency term will appear.

 \Rightarrow Bad estimation of high frequencies.

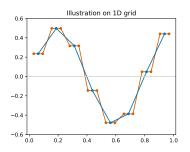
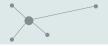
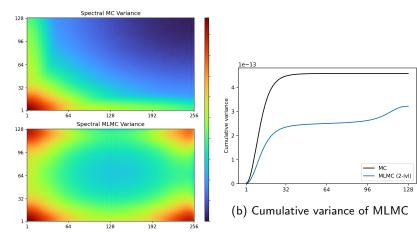


Figure: The 2nd column of \mathbf{H} on a grid of size 8 (blue), and its prolongation on a grid of size 16 (orange).



Spectral decomposition of the variance



(a) Spectral decomposition of the variance of MC and MLMC estimators

19/31

- 1. MLMC for the expectation of random variables
- 2. MLMC for the expectation of discretized random fields
- 3. Application
- 4. Spectral analysis of MLMC
- 5. Filtered MLMC
- 6. Choice of operators
- 7. Conclusion

Idea: filtering the high frequencies when transferring discretized fields from a grid to another with smoother operators. A second-order Shapiro filter with the following stencil for example:

$$\frac{1}{4} \begin{pmatrix} 1/16 & 1/8 & 1/16\\ 1/8 & 1/4 & 1/8\\ 1/16 & 1/8 & 1/16 \end{pmatrix}$$

If we denote ${\bf S}$ the smoother operator used we would have:

$$\mathbf{Y} = \mathbf{SP} f_0(\mathbf{RSX}).$$

Ralph Shapiro, *Smoothing, filtering, and boundary effects*, Reviews of Geophysics **8** (1970), no. 2, 359–387 (en), doi: 10.1029/RG008i002p00359

Filtered MLMC (F-MLMC) estimation

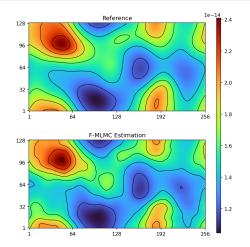
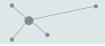
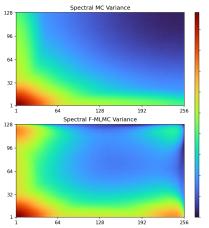


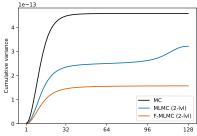
Figure: The exact normalization coefficients and a 4-levels F-MLMC estimation computed with the same budget as a 100 samples MC.



Filtered MLMC (F-MLMC) estimation



(a) Spectral decomposition of the variance of MC and F-MLMC estimators



(b) Cumulative variance of MC, MLMC and F-MLMC estimator

- 1. MLMC for the expectation of random variables
- 2. MLMC for the expectation of discretized random fields
- 3. Application
- 4. Spectral analysis of MLMC
- 5. Filtered MLMC
- 6. Choice of operators
- 7. Conclusion

Choice of operators

Two estimators tested:

- the MLMC estimator with $\mathbf{Y}_{\ell} = \mathbf{P} f_{\ell}(\mathbf{R}\mathbf{X})$.
- the F-MLMC estimator with $\mathbf{Y}_{\ell} = \mathbf{SP} f_{\ell}(\mathbf{RSX})$,

The F-MLMC can reach much lower variance.

 \Rightarrow Results depends a lot on chosen P and R.

Choice of operators

Two estimators tested:

- the MLMC estimator with $\mathbf{Y}_{\ell} = \mathbf{P} f_{\ell}(\mathbf{R}\mathbf{X})$.
- the F-MLMC estimator with $\mathbf{Y}_{\ell} = \mathbf{SP} f_{\ell}(\mathbf{RSX})$,

The F-MLMC can reach much lower variance.

 \Rightarrow Results depends a lot on chosen P and R.

Problematic

How can one choose the best ${\bf P}$ and ${\bf R}$ (or the smoothing operator ${\bf S})$ such that the variance of the MLMC estimator is minimized ?

Problematic

How can one choose the best ${\bf P}$ and ${\bf R}$ (or the smoothing operator ${\bf S})$ such that the variance of the MLMC estimator is minimized ?

- Testing different smoothing operators (2nd order Shapiro, 4th order Shapiro, iterative Shapiro, ...).
- Choosing the operators based on their order compared to the order of the models f_l.
- Using estimators similar to the Multilevel Best Linear Unbiased Estimator (MBLUE).

Daniel Schaden and Elisabeth Ullmann, *On Multilevel Best Linear Unbiased Estimators*, SIAM/ASA Journal on Uncertainty Quantification **8** (2020), no. 2, 601–635

Weighted-MLMC estimator

The WMLMC estimator is

$$\hat{\mu}_{L}^{\mathsf{WMLMC}} = \beta_{0} \hat{\mu}_{0}^{(0)} + \sum_{\ell=1}^{L} \left(\beta_{\ell} \hat{\mu}_{\ell}^{(\ell)} - \beta_{\ell-1} \hat{\mu}_{\ell-1}^{(\ell)} \right)$$

where $\{\beta_{\ell}\}_{\ell=0}^{L}$ are scalar weights with $\beta_{L} = 1$ (for the unbiasedness constraint).

A formula to find the optimal weights $\{\beta_{\ell}\}_{\ell=0}^{L}$ that minimize the variance of the estimator is known.

Vincent Lemaire and Gilles Pagès, *Multilevel Richardson–Romberg extrapolation*, Bernoulli **23** (2017), no. 4A, 2643–2692

Use of WMLMC estimator

If we impose $\mathbf{P} = \alpha \mathbf{R}^{\mathrm{T}}$, by linearity, the F-MLMC estimator can be written

$$\hat{\boldsymbol{\mu}}_{L}^{\text{F-MLMC}} = \alpha^{L} \hat{\boldsymbol{\mu}}_{0}^{(0)} + \sum_{\ell=1}^{L} \left(\alpha^{L-\ell} \hat{\boldsymbol{\mu}}_{\ell}^{(\ell)} - \alpha^{L-\ell+1} \hat{\boldsymbol{\mu}}_{\ell-1}^{(\ell)} \right).$$

 \Rightarrow It is a WMLMC estimator with weights $\{\alpha^{L-\ell}\}_{\ell=0}^{L}$.

Use of WMLMC estimator

If we impose $\mathbf{P} = \alpha \mathbf{R}^{\mathrm{T}}$, by linearity, the F-MLMC estimator can be written

$$\hat{\mu}_{L}^{\text{F-MLMC}} = \alpha^{L} \hat{\mu}_{0}^{(0)} + \sum_{\ell=1}^{L} \left(\alpha^{L-\ell} \hat{\mu}_{\ell}^{(\ell)} - \alpha^{L-\ell+1} \hat{\mu}_{\ell-1}^{(\ell)} \right).$$

 \Rightarrow It is a WMLMC estimator with weights $\{\alpha^{L-\ell}\}_{\ell=0}^L.$

Using the formulas to find the optimal weights will give us the optimal α used to define **P**. Previously, we used $\alpha = 1/\sqrt{2}$.

Poids optimaux $\{eta_\ell\}_{\ell=0}^L$ de l'estimateur WMLMC						
ℓ	$1/\sqrt{2}^{5-\ell}$	L = 1	L=2	L = 3	L = 4	L = 5
0	0.1768	/	/	/	/	0.1727
1	0.25	/	/	/	0.2497	0.2525
2	0.3536	/	/	0.3538	0.3558	0.3565
3	0.5	/	0.5000	0.5005	0.5013	0.5015
4	0.7071	0.7043	0.7060	0.7067	0.7072	0.7073
5	1	1	1	1	1	1

Table: Optimal weights $\{\beta_\ell\}_{\ell=0}^L$ obtained by the WMLMC estimator. The first column is the weights $\{\alpha^{L-\ell}\}_{\ell=0}^L$ used previously for the F-MLMC.

- 1. MLMC for the expectation of random variables
- 2. MLMC for the expectation of discretized random fields
- 3. Application
- 4. Spectral analysis of MLMC
- 5. Filtered MLMC
- 6. Choice of operators

7. Conclusion

- In many geoscience applications, we want to estimate the expectation of a random discretized fields and the different fidelity levels come from grids of different resolution;
- MLMC for random discretized fields estimation usually requires grid transfer operators;
- The small scales are not well-estimated and introduce errors all across the spectrum;
- A smoothing step is essential to improve the accuracy of the estimation.
- Some estimators may help in choosing the optimal operators (the WMLMC for example).

Thank you for your attention !

Contact: jeremy.briant@irit.fr

Thank you for your attention !

Contact: jeremy.briant@irit.fr

Preprint article : Jérémy Briant, Paul Mycek, Mayeul Destouches, Olivier Goux, Serge Gratton, Selime Gürol, Ehouarn Simon, and Anthony T. Weaver, *A filtered multilevel Monte Carlo method for estimating the expectation of discretized random fields*, November 2023