Randomized Implicitly Restarted Arnoldi algorithm for the unsymmetric eigenvalue problem

Jean-Guillaume de Damas
under the supervision of Laura Grigori

INRIA Paris

June 17, 2024

Krylov iterative methods

One of the most time consuming step in a simulation : solving of a large and sparse eigenvalue problem:

$$
A x=\lambda x
$$

$$
A \in \mathbb{R}^{n \times n}, \quad x \in \mathbb{R}^{n}, \quad \lambda \in \mathbb{C}, \quad n \in \mathbb{N} \quad \text { large, say } n \approx 10^{6}
$$

Krylov iterative methods

One of the most time consuming step in a simulation : solving of a large and sparse eigenvalue problem:

$$
A x=\lambda x
$$

$$
A \in \mathbb{R}^{n \times n}, \quad x \in \mathbb{R}^{n}, \quad \lambda \in \mathbb{C}, \quad n \in \mathbb{N} \quad \text { large, say } n \approx 10^{6}
$$

Tool: Krylov subspace methods. These are iterative methods that benefit from system sparsity by using matrix-vector products. They build upon a starting vector v_{1} usually taken at random and the ill-conditioned subspace

$$
\begin{equation*}
\mathcal{K}_{k}\left(A, v_{1}\right) \equiv \operatorname{span}\left\{v_{1}, A v_{1}, \ldots, A^{k-1} v_{1}\right\} \tag{1}
\end{equation*}
$$

Krylov iterative methods

Tool: Krylov subspace methods. These are iterative methods that benefit from system sparsity by using matrix-vector products. They build upon a starting vector v_{1} usually taken at random and the ill-conditioned subspace

$$
\mathcal{K}_{k}\left(A, v_{1}\right) \equiv \operatorname{span}\left\{v_{1}, A v_{1}, \ldots, A^{k-1} v_{1}\right\}
$$

Krylov iterative methods

Tool: Krylov subspace methods. These are iterative methods that benefit from system sparsity by using matrix-vector products. They build upon a starting vector v_{1} usually taken at random and the ill-conditioned subspace

$$
\mathcal{K}_{k}\left(A, v_{1}\right) \equiv \operatorname{span}\left\{v_{1}, A v_{1}, \ldots, A^{k-1} v_{1}\right\}
$$

They rely on orthonormalization process, most famous orthonormalization process: Gram-Schmidt process. Costs $O\left(n k^{2}\right)$ where k is the number of iterations.

The Arnoldi factorization

When Gram-Schmidt is applied to the set $\left\{v_{1}, A v_{1}, \ldots, A^{k-1} v_{1}\right\}$, this gives the Arnoldi factorization:

Definition (Arnoldi factorization)

$$
\begin{equation*}
A V=V H_{k}+r_{k} e_{k}^{T} \tag{2}
\end{equation*}
$$

with orthogonal $V \in \mathbb{R}^{n \times k}$ and upper Hessenberg $H_{k} \in \mathbb{R}^{k \times k}$.

Restarting an Arnoldi factorization

Extract eigenpairs using Rayleigh-Ritz procedure: If $A V=V H_{k}+r_{k} e_{k}^{T}$, then

$$
\begin{align*}
\text { Compute exact pairs } H_{k} y & =\tilde{\lambda} y \tag{3}\\
\text { Obtain Ritz pairs } \quad A \tilde{u} & =\tilde{\lambda} \tilde{u}+r_{k} e_{k}^{T} y \tag{4}
\end{align*}
$$

with $\tilde{u}=V y$ giving $A \tilde{u}-\tilde{\lambda} \tilde{u} \perp \mathcal{K}_{k}$ (Galerkin condition). $(\tilde{\lambda}, \tilde{u})$ is a Ritz pair.

Restarting an Arnoldi factorization

Extract eigenpairs using Rayleigh-Ritz procedure: If $A V=V H_{k}+r_{k} e_{k}^{T}$, then

Compute exact pairs $H_{k} y=\tilde{\lambda} y$
Obtain Ritz pairs $A \tilde{u}=\tilde{\lambda} \tilde{u}+r_{k} e_{k}^{T} y$
with $\tilde{u}=V y$ giving $A \tilde{u}-\tilde{\lambda} \tilde{u} \perp \mathcal{K}_{k}$ (Galerkin condition). $(\tilde{\lambda}, \tilde{u})$ is a Ritz pair.

Issues: Cost of $O\left(n k^{2}\right)$ for the orthogonalization process when k increases up to $k \approx 10^{2}-10^{3}$. Storage of k vectors of size n for V.

Restarting an Arnoldi factorization

Extract eigenpairs using Rayleigh-Ritz procedure: If $A V=V H_{k}+r_{k} e_{k}^{T}$, then

Compute exact pairs $H_{k} y=\tilde{\lambda} y$
Obtain Ritz pairs $\quad A \tilde{u}=\tilde{\lambda} \tilde{u}+r_{k} e_{k}^{T} y$
with $\tilde{u}=V y$ giving $A \tilde{u}-\tilde{\lambda} \tilde{u} \perp \mathcal{K}_{k}$ (Galerkin condition). $(\tilde{\lambda}, \tilde{u})$ is a Ritz pair.

Issues: Cost of $O\left(n k^{2}\right)$ for the orthogonalization process when k increases up to $k \approx 10^{2}-10^{3}$. Storage of k vectors of size n for V.

Solution : one can restart the Arnoldi factorization. Fix a dimension k, compute new v_{1}^{+}from the current factorization. How to compute a relevant v_{1}^{+}?

Implicitly Restarted Arnoldi method

Idea from Sorensen in [Sor92]: apply polynomial filtering

$$
\begin{equation*}
v_{1}^{+}=\psi_{p}(A) v_{1} \tag{5}
\end{equation*}
$$

Discard unwanted directions with $\psi_{p}(A)=\prod_{i=1}^{p}\left(A-\tilde{\lambda}_{i} I\right)$.

Implicitly Restarted Arnoldi method

Idea from Sorensen in [Sor92]: apply polynomial filtering

$$
\begin{equation*}
v_{1}^{+}=\psi_{p}(A) v_{1} \tag{5}
\end{equation*}
$$

Discard unwanted directions with $\psi_{p}(A)=\prod_{i=1}^{p}\left(A-\tilde{\lambda}_{i} I\right)$. Apply the shifted-QR algorithm to H_{k+p} :

$$
\begin{equation*}
\left(H_{k+p}-\tilde{\lambda}_{i} l\right)=Q R \text { then } H_{k+p}^{+}=Q^{\top} H_{k+p} Q \tag{6}
\end{equation*}
$$

Implicitly Restarted Arnoldi method

Idea from Sorensen in [Sor92]: apply polynomial filtering

$$
\begin{equation*}
v_{1}^{+}=\psi_{p}(A) v_{1} \tag{5}
\end{equation*}
$$

Discard unwanted directions with $\psi_{p}(A)=\prod_{i=1}^{p}\left(A-\tilde{\lambda}_{i} I\right)$.
Apply the shifted-QR algorithm to H_{k+p} :

$$
\begin{equation*}
\left(H_{k+p}-\tilde{\lambda}_{i} l\right)=Q R \text { then } H_{k+p}^{+}=Q^{T} H_{k+p} Q \tag{6}
\end{equation*}
$$

Brings v_{1}^{+}closer to the span of a partial Schur factorization of A

$$
\begin{equation*}
A Z=Z T, \text { orthogonal } Z \in \mathbb{R}^{n \times k} \tag{7}
\end{equation*}
$$

Given $A V=V H_{k}+r_{k} e_{k}^{T}$, it holds [Sor92, Theorem 2.8]:

$$
\begin{equation*}
r_{k}=0 \Longleftrightarrow v_{1}=Z y \tag{8}
\end{equation*}
$$

Scheme of IRA

From a length $k: A V=V H_{k}+r_{k} e_{k}^{T}$, extend:

$$
A \boxed{V}=\overbrace{}^{H_{k+p}}+r e_{k+p}^{T}
$$

Scheme of IRA

From a length $k: A V=V H_{k}+r_{k} e_{k}^{T}$, extend:

$$
A \boxed{V}=\stackrel{H_{k+p}^{H_{k+p}}+r e_{k+p}^{T}}{c}
$$

Apply p shifted $Q R$ steps to obtain $H_{k+p}^{+}=Q R=Q^{\top} H_{k+p} Q$

Scheme of IRA

From a length $k: A V=V H_{k}+r_{k} e_{k}^{T}$, extend:

$$
\begin{aligned}
& \square \square \mathbb{V}^{H_{k+p}} \text { Apply } p \text { shifted QR steps to obtain } \\
& H_{k+p}^{+}=Q R=Q^{\top} H_{k+p} Q \\
& A \boxed{Q}=\square V \square \begin{array}{|c|c|c|c|}
H_{k+p}^{T} Q
\end{array}
\end{aligned}
$$

Scheme of IRA

From a length $k: A V=V H_{k}+r_{k} e_{k}^{T}$, extend:

$$
\begin{aligned}
& A \boxtimes=V \mathbb{V}^{H_{k+p}}+r e_{k+p}^{T} \\
& \text { Apply } p \text { shifted } Q R \text { steps to obtain } \\
& H_{k+p}^{+}=Q R=Q^{\top} H_{k+p} Q \\
& A \boxed{Q}=V \\
& \text { Q } Q^{T} \stackrel{H}{k+p} \quad \underline{Q} \\
& +r e_{k+p}^{T} Q
\end{aligned}
$$

$e_{k+p}^{T} Q=\left[0 \ldots 0 \eta_{k} \ldots \eta_{k+p}\right]$: equate first k columns to continue with $A(V Q)\left[e_{1}, \ldots, e_{k}\right]=(V Q)\left[e_{1}, \ldots, e_{k}\right] \tilde{H}_{k}+\tilde{r}_{k} e_{k}^{T}$.

Sketching

IRA requires a sequence of contractation and expansion steps. Expansion is expensive due to orthogonalization.

Sketching

IRA requires a sequence of contractation and expansion steps. Expansion is expensive due to orthogonalization.
We turn to sketching:

Definition (ε-embedding from [Woo14])

We say that $\Omega \in \mathbb{R}^{d \times n}$ is an ε-embedding for some k-dimensional subspace $\mathcal{K}_{k} \subset \mathbb{R}^{n}$ if

$$
\begin{gather*}
\forall x, y \in \mathcal{K}_{k},|\langle\Omega x, \Omega y\rangle-\langle x, y\rangle| \leq \varepsilon\|x\|\|y\| \tag{9}\\
\text { i.e. } \forall x \in \mathcal{K}_{k},(1-\varepsilon)\|x\|^{2} \leq\|\Omega x\|^{2} \leq(1+\varepsilon)\|x\|^{2} . \tag{10}
\end{gather*}
$$

Usually $d=\frac{k}{\varepsilon^{2}} \approx 4 k$ s.t. $k \leqq d \ll n$: computational cost gained.

Orthogonalization process

From INPUT $W \in \mathbb{R}^{n \times k}$, general algorithm to OUTPUT $Q \in \mathbb{R}^{n \times k}$ Ω-orthonormal: $(\Omega Q)^{T}(\Omega Q)=I_{k}, \operatorname{span}\{Q\}=\operatorname{span}\{W\}$ and $S=\Omega Q$:

1: for $j=1, \ldots, k$ do
2: \quad Initialize $q_{j}=W(:, j) \in \mathbb{R}^{n}$
3: \quad Sketch $s_{j}=\Omega q_{j} \in \mathbb{R}^{d}$
4: \quad Solve with a given method $R_{j}=\arg \min _{y \in \mathbb{R}^{j-1}}\left\|S_{j-1} y-s_{j}\right\| \in \mathbb{R}^{j-1}$
5: \quad Update $q_{j}=q_{j}-Q_{j-1} R_{j}$
6: \quad Re-sketch $s_{j}=\Omega q_{j}$
7: \quad Store $q_{j} /\left\|s_{j}\right\|$ and $s_{j} /\left\|s_{j}\right\|$
8: end for

Orthogonalization process

Solve with a given method

$$
R_{j}=\arg \min _{y \in \mathbb{R}^{j-1}}\left\|S_{j-1} y-s_{j}\right\| \in \mathbb{R}^{j-1}
$$

Case 1: $R_{j}=S_{j-1} \backslash s_{j}$. RGS from [BG22].

Orthogonalization process

Solve with a given method

$$
R_{j}=\arg \min _{y \in \mathbb{R}^{j-1}}\left\|S_{j-1} y-s_{j}\right\| \in \mathbb{R}^{j-1}
$$

Case 1: $R_{j}=S_{j-1} \backslash s_{j}$. RGS from [BG22].
Case 2 : We propose $R_{j}=S_{j-1}^{T} s_{j}$. Called rCGS.

Orthogonalization process

Solve with a given method

$$
R_{j}=\arg \min _{y \in \mathbb{R}^{j-1}}\left\|S_{j-1} y-s_{j}\right\| \in \mathbb{R}^{j-1}
$$

Case 1: $R_{j}=S_{j-1} \backslash s_{j}$. RGS from [BG22].
Case 2 : We propose $R_{j}=S_{j-1}^{T} s_{j}$. Called rCGS.
Often requires reorthogonalization:

$$
\begin{equation*}
R_{j}=S_{j-1}^{T} s_{j} \rightarrow q_{j}=q_{j}-V_{j} R_{j} \rightarrow s_{j}=\Omega q_{j} \quad 2 \text { times } \tag{11}
\end{equation*}
$$

Can be accelerated as noted in [BG22]:

$$
\begin{equation*}
R_{j}=S_{j-1}^{T} s_{j} \rightarrow s_{j}=s_{j}-S_{j-1} R_{j} \quad 2 \text { times } \tag{12}
\end{equation*}
$$

A mix of the two to stabilize it is possible. Called rCGS2.

Orthogonalization process

$\kappa(Q)$ for $Q \in \mathbb{R}^{n \times(\# \text { of iteration })}$

$$
\left\|I-S^{T} S\right\| \text { over the iterations }
$$

$W \in \mathbb{R}^{10^{5} \times 300}$ numerically singular. rCGS2 costlier but more stable.

randomized Arnoldi

RGS or variant applied to $\left\{v_{1}, A v_{1}, \ldots, A^{k-1} v_{1}\right\}$ gives

Definition (randomized Arnoldi factorization)

$$
\begin{equation*}
A V=V H_{k}+r_{k} e_{k}^{T} \tag{13}
\end{equation*}
$$

with $V \in \mathbb{R}^{n \times k} \Omega$-orthogonal: $(\Omega V)^{T}(\Omega V)=I_{k}$ and $\kappa(V) \leq \frac{\sqrt{1+\varepsilon}}{\sqrt{1-\varepsilon}}=\sqrt{3}$

randomized Arnoldi

RGS or variant applied to $\left\{v_{1}, A v_{1}, \ldots, A^{k-1} v_{1}\right\}$ gives

Definition (randomized Arnoldi factorization)

$$
\begin{equation*}
A V=V H_{k}+r_{k} e_{k}^{T} \tag{13}
\end{equation*}
$$

with $V \in \mathbb{R}^{n \times k} \Omega$-orthogonal: $(\Omega V)^{T}(\Omega V)=I_{k}$ and $\kappa(V) \leq \frac{\sqrt{1+\varepsilon}}{\sqrt{1-\varepsilon}}=\sqrt{3}$

Theorem (Jean-Guillaume de Damas, Laura Grigori)

If H_{k} is unreduced in (13), then $r_{k}=0$ if and only if $v_{1}=Z y$, where $A Z=Z T$ is a k partial Ω-orthonormal Schur factorization of A with $Z \in \mathbb{R}^{n \times k}$ and for some $y \in \mathbb{R}^{k}$.

rIRA

1: k steps randomized Arnoldi: $A V=V H_{k}+r_{k} e_{k}^{T}, S=(\Omega V) \in \mathbb{R}^{d \times k}$
2: while convergence not declared do
3: \quad Extend $A V=V H_{k+p}+r_{k+p} e_{k+p}^{T}, S=(\Omega V) \in \mathbb{R}^{d \times(k+p)}$
4: Compute eigenvalues $\left(\tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{k+p}\right)$ of H_{k+p}. Monitor residual norms on wanted pairs and define p shifts from unwanted.
5: Get $H_{k+p}^{+}=Q^{T} H_{k+p} Q$ from $p \mathrm{QR}$ shifted steps
6: \quad Set $\tilde{V}=V Q$ and $\tilde{S}=S Q$
7: \quad Set $\tilde{r}_{k}=\alpha \tilde{V}(:, k+1)+\beta r_{k+p}$
8: \quad Set $\tilde{s}_{k}=\alpha \tilde{S}(:, k+1)+\beta s_{k+p}$
9: \quad Truncate $\tilde{H}_{k}=H_{k+p}^{+}(1: k, 1: k), \tilde{V}=\tilde{V}(:, 1: k)$ and $\tilde{S}=\tilde{S}(:, 1: k)$
10: \quad Continue with factorization $A \tilde{V}=\tilde{V} \tilde{H}_{k}+\tilde{r}_{k} e_{k}^{T}, \tilde{S}=(\Omega \tilde{V}) \in \mathbb{R}^{d \times k}$. 11: end while

Sketching matrix

We take Ω as a Sparse Sign matrix of parameter $\zeta=8$:

$$
\begin{equation*}
\Omega=\frac{1}{\sqrt{\zeta}}\left[s_{1} \ldots s_{n}\right] \tag{14}
\end{equation*}
$$

where each s_{i} is a sparse column with exactly ζ random signs ± 1 draw with probability $1 / 2$. Experiments from Ethan Epperly's blog:

Time (sec)	Gaussian	SRTT	Sparse sign
Construction	2.7	0.0052	0.038
Vector apply	0.32	0.011	0.0031
Matrix apply	5.9	1.63	0.079

From "Which sketch should I use ?" $n=10^{6}, d=400, k=200$

$\kappa(V)$ for various orthogonalization and Ritz values

$A \in \mathbb{R}^{33,833 \times 33,833}$ named poli4, $k=100$ and $k+p=m=200$.

$\kappa(V)$ over inner iterations

$\kappa(V)$ for various orthogonalization and Ritz values

$A \in \mathbb{R}^{33,833 \times 33,833}$ named poli4, $k=100$ and $k+p=m=200$.

$\kappa(V)$ over inner iterations

Eigenvalues using rCGS2

Eigenvalues obtained in 2 outer iterations.

$A \in \mathbb{R}^{800 \times 800}$ with $\Lambda_{A}=\{1,2,3, \ldots, 800\}$

Residual norms $\left\|A \tilde{u}_{i}-\tilde{\lambda}_{i} \tilde{u}_{i}\right\|$

Ritz values
rIRA to compute $k=10$ Ritz pairs of smallest modulus (SM) for the non-symmetric 800×800 toy matrix A with spectrum $\Lambda_{A}=\{1,2,3, \ldots, 800\}$ and $k+p=50$

$A \in \mathbb{R}^{800 \times 800}$ with $\Lambda_{A}=\{1,2,3, \ldots, 800\}$

$$
k=10, k+p=50
$$

$k=14, k+p=50$

Hamrle3: Circuit Simulation, $n=1.4 \times 10^{6}, k=200$ LM, $m=500$.

Vas_stokes_1M: Semiconductor Process, $n=10^{6}, k=50$ SM, $m=100$.

Comparison eigs / RGS-rIRA. Tolerance $\eta=10^{-10}$

\mathbf{k}	\mathbf{m}	Which	Nit	Time (s)
tmt_unsym (Electromagnetic Problem) of size $n=9 \times 10^{5}$ with 4.5×10^{6} nonzeros.				
20	200	LM	$98 / 102$	$1417 / \mathbf{1 2 9 6}$
20	200	SM	$74 / 69$	$1149 / \mathbf{1 0 5 4}$

Vas_stokes_1M (Semiconductor Process Problem) of size $n=1.1 \times 10^{6}$ with 3.5×10^{7} nonzeros.

50	200	LM	$7 / 7$	$175 / 161$
50	200	SM	$336 / 575$	$7727 / \mathbf{1 2 8 6 0}$

atmosmodl (Computational Fluid Dynamics) of size $n=1.5 \times 10^{6}$ with 1.0×10^{7} nonzeros.

50	200	LM	$30 / 32$	$725 / 638$
50	200	SM	$32 / 34$	$740 / 687$

ML_Geer (Strucural Problem) of size $n=1.5 \times 10^{6}$ with 1.1×10^{8} nonzeros.

50	200	LM	$3 / 3$	$142 / 134$
50	200	SM	maxit (1000)	no convergence

Randomized Arnoldi analysis

Theorem (Optimal property)

Suppose $A V=V H_{k}+r_{k} e_{k}^{T}$ is a randomized Arnoldi factorization. Then H_{k} is the representation in \mathbb{R}^{k} with respect to the basis V of the randomized projection $P_{\mathcal{K}_{k}}^{\Omega} A P_{\mathcal{K}_{k}}^{\Omega}$ restricted to \mathcal{K}_{k}, that is

$$
\begin{equation*}
P_{\mathcal{K}_{k}}^{\Omega} A P_{\mathcal{K}_{k}}^{\Omega} x=V H_{k} y \quad \text { when } x=V y . \tag{15}
\end{equation*}
$$

Moreover, its characteristic polynomial \hat{p}_{k} minimizes $\left\|\Omega p(A) v_{1}\right\|$ over the set $\mathcal{P} \mathcal{M}_{k}$ of all monic polynomial p of degree k, i.e.

$$
\begin{equation*}
\hat{p}_{k}=\arg \min _{p \in \mathcal{P} \mathcal{M}_{k}}\left\|\Omega p(A) v_{1}\right\| \tag{16}
\end{equation*}
$$

Randomized Arnoldi analysis

Theorem (Residual as a function of v_{1})

Let $A V_{j}=V_{j} H_{j}+r_{j} e_{j}^{T}$ be a sequence of j successive inner randomized Arnoldi steps with $1 \leq j \leq k$ such that $V_{j} \in \mathbb{R}^{n \times j}, H_{j} \in \mathbb{R}^{j \times j}, H_{k}$ is unreduced and Ω is an ε-embedding for $\operatorname{span}\left\{V_{k}, r_{k}\right\}$. Note by \hat{p}_{j} the characteristic polynomial of H_{j}. Then:

$$
\begin{equation*}
r_{j}=\frac{\hat{p}_{j}(A) v_{1}}{\left\|\Omega \hat{p}_{j-1}(A) v_{1}\right\|} \tag{17}
\end{equation*}
$$

Randomized Arnoldi analysis

Theorem (Residual as a function of v_{1})

Let $A V_{j}=V_{j} H_{j}+r_{j} e_{j}^{T}$ be a sequence of j successive inner randomized Arnoldi steps with $1 \leq j \leq k$ such that $V_{j} \in \mathbb{R}^{n \times j}, H_{j} \in \mathbb{R}^{j \times j}, H_{k}$ is unreduced and Ω is an ε-embedding for $\operatorname{span}\left\{V_{k}, r_{k}\right\}$. Note by \hat{p}_{j} the characteristic polynomial of H_{j}. Then:

$$
\begin{equation*}
r_{j}=\frac{\hat{p}_{j}(A) v_{1}}{\left\|\Omega \hat{p}_{j-1}(A) v_{1}\right\|} \tag{17}
\end{equation*}
$$

Theorem (Randomized Implicit Q theorem)
A randomized Arnoldi $A V=V H_{k}+r_{k} e_{k}^{T}$ is uniquely defined by v_{1}.

rIRA analysis

Theorem (Restarting subspace)

rIRA does not add error when restarting from Ritz vectors $\tilde{u}_{1}, \ldots, \tilde{u}_{k}$:

$$
\begin{equation*}
\operatorname{span}\left\{V Q\left[e_{1}, \ldots, e_{k}\right]\right\}=\operatorname{span}\left\{\tilde{u}_{1}, \ldots, \tilde{u}_{k}\right\} \tag{18}
\end{equation*}
$$

rIRA analysis

Theorem (Restarting subspace)

rIRA does not add error when restarting from Ritz vectors $\tilde{u}_{1}, \ldots, \tilde{u}_{k}$:

$$
\begin{equation*}
\operatorname{span}\left\{V Q\left[e_{1}, \ldots, e_{k}\right]\right\}=\operatorname{span}\left\{\tilde{u}_{1}, \ldots, \tilde{u}_{k}\right\} \tag{18}
\end{equation*}
$$

Theorem (Fixed shifts convergence)

Let π_{i} the product of the subdiagonal elements of $H_{k}^{(i)}$. Then there exists a constant K and a positive integer I such that for $i>l$:

$$
\begin{equation*}
0 \leq \pi_{i} \leq \sqrt{\frac{1+\varepsilon}{1-\varepsilon}} \gamma^{i} K \tag{19}
\end{equation*}
$$

Summary

- Explored randomization for the Arnoldi process, proposed rCGS2

■ Derived a restarting algorithm rIRA using randomized Arnoldi

- Maintained precision, obtained speedup

Thank you for your attention.
Reach me at jean-guillaume.de-damas@inria.fr!

Appendix

- W is defined as

$$
\begin{equation*}
W_{i, j}=\frac{\sin \left(10\left(\mu_{j}+x_{i}\right)\right)}{\cos \left(100\left(\mu_{j}-x-i\right)\right)+1.1} \tag{20}
\end{equation*}
$$

where x_{i} and μ_{j} range 0 to 1 with equally distanced points, given $n=10^{5}$ and $k=300$.
■ Comparison eigs / rIRA done on a node with $2 x$ Cascade Lake Intel Xeon 521816 cores, 2.4 GHz processor and 192GB of RAM.

- Sparse Sign matrix of parameter $\zeta=8: \Omega=\frac{1}{\sqrt{\zeta}}\left[s_{1} \ldots s_{n}\right]$, where each s_{i} is a sparse column with exactly ζ random signs ± 1 draw with probability $1 / 2$.

Appendix

