Randomized Implicitly Restarted Arnoldi algorithm for the unsymmetric eigenvalue problem

Jean-Guillaume de Damas under the supervision of Laura Grigori

INRIA Paris

June 17, 2024

Extreme-scale Mathematically-based Computational Chemistry

randomized IRA

One of the most time consuming step in a simulation : solving of a large and sparse eigenvalue problem:

 $Ax = \lambda x,$ $A \in \mathbb{R}^{n imes n}, \quad x \in \mathbb{R}^n, \quad \lambda \in \mathbb{C}, \quad n \in \mathbb{N} \quad \text{large, say } n \approx 10^6$

One of the most time consuming step in a simulation : solving of a large and sparse eigenvalue problem:

$$Ax = \lambda x,$$

 $A \in \mathbb{R}^{n imes n}, \quad x \in \mathbb{R}^n, \quad \lambda \in \mathbb{C}, \quad n \in \mathbb{N}$ large, say $n pprox 10^6$

Tool : Krylov subspace methods. These are iterative methods that benefit from system sparsity by using matrix-vector products. They build upon a starting vector v_1 usually taken at random and the ill-conditioned subspace

$$\mathcal{K}_k(A, v_1) \equiv \operatorname{span}\{v_1, Av_1, \dots, A^{k-1}v_1\}$$
(1)

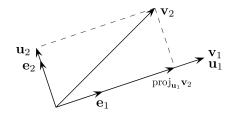
Tool : Krylov subspace methods. These are iterative methods that benefit from system sparsity by using matrix-vector products. They build upon a starting vector v_1 usually taken at random and the ill-conditioned subspace

$$\mathcal{K}_k(A, v_1) \equiv \mathsf{span}\{v_1, Av_1, \dots, A^{k-1}v_1\}$$

Tool : Krylov subspace methods. These are iterative methods that benefit from system sparsity by using matrix-vector products. They build upon a starting vector v_1 usually taken at random and the ill-conditioned subspace

$$\mathcal{K}_k(A, v_1) \equiv \mathsf{span}\{v_1, Av_1, \dots, A^{k-1}v_1\}$$

They rely on orthonormalization process, most famous orthonormalization process : Gram-Schmidt process. Costs $O(nk^2)$ where k is the number of iterations.



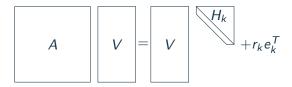
The Arnoldi factorization

When Gram-Schmidt is applied to the set $\{v_1, Av_1, \ldots, A^{k-1}v_1\}$, this gives the Arnoldi factorization:

Definition (Arnoldi factorization)

$$AV = VH_k + r_k e_k^T$$

with orthogonal $V \in \mathbb{R}^{n \times k}$ and upper Hessenberg $H_k \in \mathbb{R}^{k \times k}$.



Sar

(2)

Restarting an Arnoldi factorization

Extract eigenpairs using Rayleigh-Ritz procedure: If $AV = VH_k + r_k e_k^T$, then

Compute exact pairs
$$H_k y = \tilde{\lambda} y$$
 (3)

Obtain Ritz pairs $A\tilde{u} = \tilde{\lambda}\tilde{u} + r_k e_k^T y$ (4)

with $\tilde{u} = Vy$ giving $A\tilde{u} - \tilde{\lambda}\tilde{u} \perp \mathcal{K}_k$ (Galerkin condition). $(\tilde{\lambda}, \tilde{u})$ is a Ritz pair.

Restarting an Arnoldi factorization

Extract eigenpairs using Rayleigh-Ritz procedure: If $AV = VH_k + r_k e_k^T$, then

Compute exact pairs
$$H_k y = \tilde{\lambda} y$$
 (3)

Obtain Ritz pairs $A\tilde{u} = \tilde{\lambda}\tilde{u} + r_k e_k^T y$ (4)

with $\tilde{u} = Vy$ giving $A\tilde{u} - \tilde{\lambda}\tilde{u} \perp \mathcal{K}_k$ (Galerkin condition). $(\tilde{\lambda}, \tilde{u})$ is a Ritz pair.

Issues : Cost of $O(nk^2)$ for the orthogonalization process when k increases up to $k \approx 10^2 - 10^3$. Storage of k vectors of size n for V.

Restarting an Arnoldi factorization

Extract eigenpairs using Rayleigh-Ritz procedure: If $AV = VH_k + r_k e_k^T$, then

Compute exact pairs
$$H_k y = \tilde{\lambda} y$$
 (3)

Obtain Ritz pairs $A\tilde{u} = \tilde{\lambda}\tilde{u} + r_k e_k^T y$ (4)

with $\tilde{u} = Vy$ giving $A\tilde{u} - \tilde{\lambda}\tilde{u} \perp \mathcal{K}_k$ (Galerkin condition). $(\tilde{\lambda}, \tilde{u})$ is a Ritz pair.

Issues : Cost of $O(nk^2)$ for the orthogonalization process when k increases up to $k \approx 10^2 - 10^3$. Storage of k vectors of size n for V.

Solution : one can restart the Arnoldi factorization. Fix a dimension k, compute new v_1^+ from the current factorization. How to compute a relevant v_1^+ ?

Context & tools

Implicitly Restarted Arnoldi method

Idea from Sorensen in [Sor92]: apply polynomial filtering

$$v_1^+ = \psi_p(A)v_1 \tag{5}$$

Discard unwanted directions with $\psi_p(A) = \prod_{i=1}^p (A - \tilde{\lambda}_i I)$.

Implicitly Restarted Arnoldi method

Idea from Sorensen in [Sor92]: apply polynomial filtering

$$\nu_1^+ = \psi_p(A)\nu_1 \tag{5}$$

Discard unwanted directions with $\psi_p(A) = \prod_{i=1}^p (A - \tilde{\lambda}_i I)$. Apply the shifted-QR algorithm to H_{k+p} :

$$(H_{k+p} - \tilde{\lambda}_i I) = QR \text{ then } H_{k+p}^+ = Q^T H_{k+p} Q \tag{6}$$

Implicitly Restarted Arnoldi method

Idea from Sorensen in [Sor92]: apply polynomial filtering

$$\nu_1^+ = \psi_p(A)\nu_1 \tag{5}$$

Discard unwanted directions with $\psi_p(A) = \prod_{i=1}^p (A - \tilde{\lambda}_i I)$. Apply the shifted-QR algorithm to H_{k+p} :

$$(H_{k+p} - \tilde{\lambda}_i I) = QR \text{ then } H_{k+p}^+ = Q^T H_{k+p} Q$$
(6)

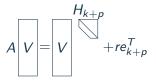
Brings v_1^+ closer to the span of a partial Schur factorization of A

$$AZ = ZT$$
, orthogonal $Z \in \mathbb{R}^{n \times k}$ (7)

Given $AV = VH_k + r_k e_k^T$, it holds [Sor92, Theorem 2.8]:

$$r_k = 0 \iff v_1 = Zy \tag{8}$$

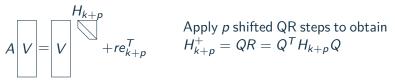
From a length k: $AV = VH_k + r_k e_k^T$, extend:



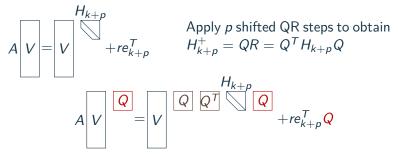
< □ ▶

990

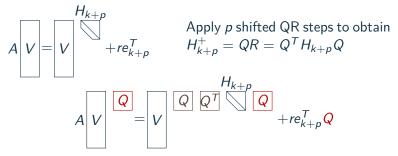
From a length k: $AV = VH_k + r_k e_k^T$, extend:



From a length k: $AV = VH_k + r_k e_k^T$, extend:



From a length k: $AV = VH_k + r_k e_k^T$, extend:



 $e_{k+p}^{T} Q = [0 \dots 0 \ \eta_k \dots \eta_{k+p}]$: equate first k columns to continue with $A(VQ)[e_1, \dots, e_k] = (VQ)[e_1, \dots, e_k] \widetilde{H}_k + \widetilde{r}_k e_k^{T}$.

Sketching

IRA requires a sequence of contractation and expansion steps. Expansion is expensive due to orthogonalization.

< □ ▶

990

Sketching

IRA requires a sequence of contractation and expansion steps. Expansion is expensive due to orthogonalization.

We turn to sketching:

Definition (ε -embedding from [Woo14])

We say that $\Omega \in \mathbb{R}^{d \times n}$ is an ε -embedding for some k-dimensional subspace $\mathcal{K}_k \subset \mathbb{R}^n$ if

$$\forall x, y \in \mathcal{K}_k, \ |\langle \Omega x, \Omega y \rangle - \langle x, y \rangle| \le \varepsilon ||x|| \, ||y|| \,. \tag{9}$$

i.e.
$$\forall x \in \mathcal{K}_k$$
, $(1 - \varepsilon) \|x\|^2 \le \|\Omega x\|^2 \le (1 + \varepsilon) \|x\|^2$. (10)

Usually $d = \frac{k}{\varepsilon^2} \approx 4k$ s.t. $k \leq d \ll n$: computational cost gained.

From **INPUT** $W \in \mathbb{R}^{n \times k}$, general algorithm to **OUTPUT** $Q \in \mathbb{R}^{n \times k}$ Ω -orthonormal: $(\Omega Q)^T (\Omega Q) = I_k$, span $\{Q\} = \text{span}\{W\}$ and $S = \Omega Q$:

1: for
$$j = 1, ..., k$$
 do

2: Initialize
$$q_j = W(:,j) \in \mathbb{R}^n$$

- 3: Sketch $s_j = \Omega q_j \in \mathbb{R}^d$
- 4: Solve with a given method $R_j = rgmin_{y \in \mathbb{R}^{j-1}} \|S_{j-1}y s_j\| \in \mathbb{R}^{j-1}$

5: Update
$$q_j = q_j - Q_{j-1}R_j$$

- 6: Re-sketch $s_j = \Omega q_j$
- 7: Store $q_j / ||s_j||$ and $s_j / ||s_j||$
- 8: end for

Solve with a given method

$$extsf{R}_{j} = rgmin_{y \in \mathbb{R}^{j-1}} \| extsf{S}_{j-1}y - extsf{s}_{j}\| \, \in \mathbb{R}^{j-1}$$

Case 1 : $R_j = S_{j-1} \setminus s_j$. RGS from [BG22].

< □ ▶

э

DQC

Solve with a given method

$$R_j = rgmin_{y \in \mathbb{R}^{j-1}} \|S_{j-1}y - s_j\| \in \mathbb{R}^{j-1}$$

Case 1 : $R_j = S_{j-1} \setminus s_j$. RGS from [BG22]. **Case 2 :** We propose $R_j = S_{j-1}^T s_j$. Called rCGS.

Solve with a given method

$$R_j = rg\min_{y \in \mathbb{R}^{j-1}} \|S_{j-1}y - s_j\| \in \mathbb{R}^{j-1}$$

Case 1 : $R_j = S_{j-1} \setminus s_j$. RGS from [BG22]. **Case 2 :** We propose $R_j = S_{j-1}^T s_j$. Called rCGS. Often requires reorthogonalization:

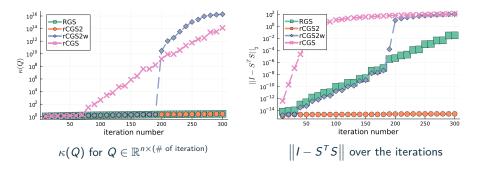
$$R_j = S_{j-1}^T s_j \rightarrow q_j = q_j - V_j R_j \rightarrow s_j = \Omega q_j$$
 2 times (11)

Can be accelerated as noted in [BG22]:

$$R_j = S_{j-1}^T s_j \rightarrow s_j = s_j - S_{j-1} R_j \quad 2 \text{ times}$$
(12)

< □ ▶

A mix of the two to stabilize it is possible. Called rCGS2.



 $W \in \mathbb{R}^{10^5 \times 300}$ numerically singular. rCGS2 costlier but more stable.

< □ ▶

990

randomized Arnoldi

RGS or variant applied to $\{v_1, Av_1, \dots, A^{k-1}v_1\}$ gives

Definition (randomized Arnoldi factorization)

$$AV = VH_k + r_k e_k^T \tag{13}$$

with
$$V \in \mathbb{R}^{n \times k}$$
 Ω -orthogonal: $(\Omega V)^T (\Omega V) = I_k$ and $\kappa(V) \leq \frac{\sqrt{1+\varepsilon}}{\sqrt{1-\varepsilon}} = \sqrt{3}$

randomized Arnoldi

RGS or variant applied to $\{v_1, Av_1, \dots, A^{k-1}v_1\}$ gives

Definition (randomized Arnoldi factorization)

$$AV = VH_k + r_k e_k^T \tag{13}$$

with
$$V \in \mathbb{R}^{n imes k}$$
 Ω -orthogonal: $(\Omega V)^T (\Omega V) = I_k$ and $\kappa(V) \leq \frac{\sqrt{1+\varepsilon}}{\sqrt{1-\varepsilon}} = \sqrt{3}$

Theorem (Jean-Guillaume de Damas, Laura Grigori)

If H_k is unreduced in (13), then $r_k = 0$ if and only if $v_1 = Zy$, where AZ = ZT is a k partial Ω -orthonormal Schur factorization of A with $Z \in \mathbb{R}^{n \times k}$ and for some $y \in \mathbb{R}^k$.

rIRA

- 1: k steps randomized Arnoldi: $AV = VH_k + r_k e_k^T$, $S = (\Omega V) \in \mathbb{R}^{d \times k}$
- 2: while convergence not declared do
- 3: Extend $AV = VH_{k+p} + r_{k+p}e_{k+p}^T$, $S = (\Omega V) \in \mathbb{R}^{d \times (k+p)}$
- 4: Compute eigenvalues $(\tilde{\lambda}_1, \dots, \tilde{\lambda}_{k+p})$ of H_{k+p} . Monitor residual norms on wanted pairs and define p shifts from unwanted.
- 5: Get $H_{k+p}^+ = Q^T H_{k+p} Q$ from p QR shifted steps

6: Set
$$\tilde{V} = VQ$$
 and $\tilde{S} = SQ$

7: Set
$$\tilde{r}_k = \alpha \tilde{V}(:, k+1) + \beta r_{k+p}$$

8: Set
$$\tilde{s}_k = \alpha \tilde{S}(:, k+1) + \beta s_{k+p}$$

- 9: Truncate $\tilde{H}_{k} = H_{k+p}^{+}(1:k,1:k), \ \tilde{V} = \tilde{V}(:,1:k)$ and $\tilde{S} = \tilde{S}(:,1:k)$
- 10: Continue with factorization $A\tilde{V} = \tilde{V}\tilde{H}_k + \tilde{r}_k e_k^T$, $\tilde{S} = (\Omega \tilde{V}) \in \mathbb{R}^{d \times k}$. 11: end while

Sketching matrix

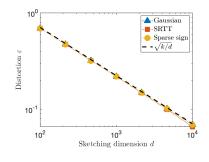
We take Ω as a Sparse Sign matrix of parameter $\zeta = 8$:

$$\Omega = \frac{1}{\sqrt{\zeta}} [s_1 \dots s_n], \qquad (14)$$

where each s_i is a sparse column with exactly ζ random signs ± 1 draw with probability 1/2. Experiments from Ethan Epperly's blog:

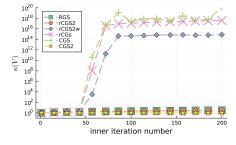
Time (sec)	Gaussian	SRTT	Sparse sign
Construction	2.7	0.0052	0.038
Vector apply	0.32	0.011	0.0031
Matrix apply	5.9	1.63	0.079

From "Which sketch should I use ?" $n = 10^6$, d = 400, k = 200



$\kappa(V)$ for various orthogonalization and Ritz values

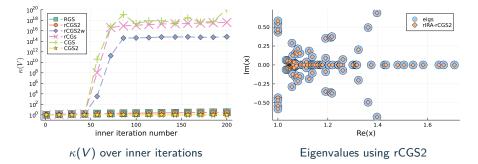
 $A \in \mathbb{R}^{33,833 \times 33,833}$ named poli4, k = 100 and k + p = m = 200.



 $\kappa(V)$ over inner iterations

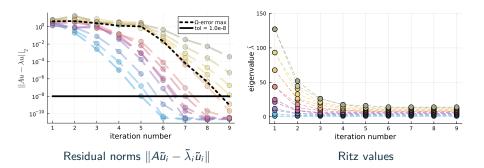
$\kappa(V)$ for various orthogonalization and Ritz values

 $A \in \mathbb{R}^{33,833 \times 33,833}$ named poli4, k = 100 and k + p = m = 200.



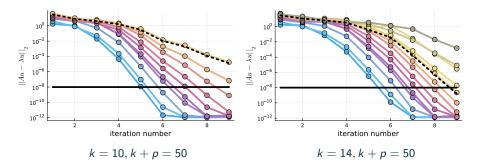
Eigenvalues obtained in 2 outer iterations.

$A \in \overline{\mathbb{R}^{800 imes 800}}$ with $\Lambda_A = \{1, 2, 3, \dots, 800\}$



rIRA to compute k = 10 Ritz pairs of smallest modulus (SM) for the non-symmetric 800 × 800 toy matrix A with spectrum $\Lambda_A = \{1, 2, 3, ..., 800\}$ and k + p = 50

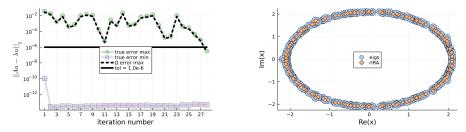
$A \in \mathbb{R}^{800 imes 800}$ with $\Lambda_A = \{1, 2, 3, \dots, 800\}$



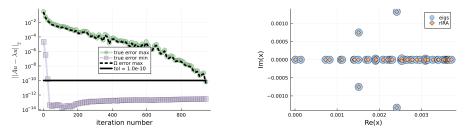
< 🗆

990

Hamrle3: Circuit Simulation, $n = 1.4 \times 10^6$, k = 200 LM, m = 500.



Vas_stokes_1M: Semiconductor Process, $n = 10^6$, k = 50 SM, m = 100.



Sparse Days, Jean-Guillaume de Damas

randomized IRA

June 17, 2024 17 / 22

DQC

Comparison eigs / RGS-rIRA. Tolerance $\eta = 10^{-10}$

k	m	Which	Nit	Time (s)	
	tmt_unsym (Electromagnetic Problem) of size $n = 9 \times 10^5$ with 4.5×10^6 nonzeros.				
20	200	LM	98 / 102	1417 / 1296	
20	200	SM	74 / 69	1149 / 1054	
Vas_stokes_1M (Semiconductor Process Problem) of size $n = 1.1 \times 10^6$ with 3.5×10^7 nonzeros.					
50	200	LM	7 / 7	175 / 161	
50	200	SM	336 / 575	7727 / 12860	
atr	atmosmodl (Computational Fluid Dynamics) of size $n = 1.5 \times 10^6$ with 1.0×10^7 nonzeros.				
50	200	LM	30 / 32	725 / 638	
50	200	SM	32 / 34	740 / 687	
ML_Geer (Strucural Problem) of size $n = 1.5 \times 10^6$ with 1.1×10^8 nonzeros.					
50	200	LM	3 / 3	142 / 134	
50	200	SM	maxit (1000)	no convergence	

Sparse Days, Jean-Guillaume de Damas

< □ ▶

June 17, 2024 18 / 22

∢ ⊒

э

990

Randomized Arnoldi analysis

Theorem (Optimal property)

Suppose $AV = VH_k + r_k e_k^T$ is a randomized Arnoldi factorization. Then H_k is the representation \mathbb{R}^k with respect to the basis V of the randomized projection $P_{\mathcal{K}_k}^{\Omega} A P_{\mathcal{K}_k}^{\Omega}$ restricted to \mathcal{K}_k , that is

$$P^{\Omega}_{\mathcal{K}_k} A P^{\Omega}_{\mathcal{K}_k} x = V H_k y \quad \text{when } x = V y.$$
(15)

Moreover, its characteristic polynomial \hat{p}_k minimizes $||\Omega p(A)v_1||$ over the set \mathcal{PM}_k of all monic polynomial p of degree k, i.e.

$$\hat{p}_{k} = \arg \min_{p \in \mathcal{PM}_{k}} \|\Omega p(A) v_{1}\|$$
(16)

Randomized Arnoldi analysis

Theorem (Residual as a function of v_1)

Let $AV_j = V_jH_j + r_je_j^T$ be a sequence of j successive inner randomized Arnoldi steps with $1 \le j \le k$ such that $V_j \in \mathbb{R}^{n \times j}$, $H_j \in \mathbb{R}^{j \times j}$, H_k is unreduced and Ω is an ε -embedding for span $\{V_k, r_k\}$. Note by \hat{p}_j the characteristic polynomial of H_j . Then:

$$r_j = \frac{\hat{p}_j(A)v_1}{\|\Omega \hat{p}_{j-1}(A)v_1\|}.$$
(17)

Randomized Arnoldi analysis

Theorem (Residual as a function of v_1)

Let $AV_j = V_jH_j + r_je_j^T$ be a sequence of j successive inner randomized Arnoldi steps with $1 \le j \le k$ such that $V_j \in \mathbb{R}^{n \times j}$, $H_j \in \mathbb{R}^{j \times j}$, H_k is unreduced and Ω is an ε -embedding for span $\{V_k, r_k\}$. Note by \hat{p}_j the characteristic polynomial of H_j . Then:

$$r_{j} = \frac{\hat{p}_{j}(A)v_{1}}{\|\Omega\hat{p}_{j-1}(A)v_{1}\|}.$$
(17)

Theorem (Randomized Implicit Q theorem)

A randomized Arnoldi $AV = VH_k + r_k e_k^T$ is uniquely defined by v_1 .

rIRA analysis

Theorem (Restarting subspace)

rIRA does not add error when restarting from Ritz vectors $\tilde{u}_1, \ldots, \tilde{u}_k$:

$$\operatorname{span}\{VQ[e_1,\ldots,e_k]\} = \operatorname{span}\{\tilde{u}_1,\ldots,\tilde{u}_k\}$$
(18)

< D >

э

DQC

rIRA analysis

Theorem (Restarting subspace)

rIRA does not add error when restarting from Ritz vectors $\tilde{u}_1, \ldots, \tilde{u}_k$:

$$\operatorname{span}\{VQ[e_1,\ldots,e_k]\} = \operatorname{span}\{\tilde{u}_1,\ldots,\tilde{u}_k\}$$
(18)

Theorem (Fixed shifts convergence)

Let π_i the product of the subdiagonal elements of $H_k^{(i)}$. Then there exists a constant K and a positive integer I such that for i > I:

$$0 \le \pi_i \le \sqrt{\frac{1+\varepsilon}{1-\varepsilon}} \gamma^i K.$$
(19)

- Explored randomization for the Arnoldi process, proposed rCGS2
- Derived a restarting algorithm rIRA using randomized Arnoldi
- Maintained precision, obtained speedup

Thank you for your attention. Reach me at jean-guillaume.de-damas@inria.fr!

Appendix

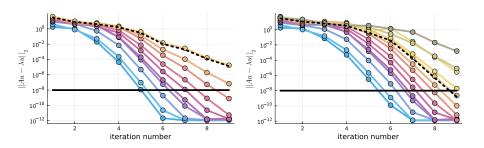
W is defined as

$$W_{i,j} = \frac{\sin(10(\mu_j + x_i))}{\cos(100(\mu_j - x - i)) + 1.1}$$
(20)

where x_i and μ_j range 0 to 1 with equally distanced points, given $n = 10^5$ and k = 300.

- Comparison eigs / rIRA done on a node with 2x Cascade Lake Intel Xeon 5218 16 cores, 2.4GHz processor and 192GB of RAM.
- Sparse Sign matrix of parameter $\zeta = 8$: $\Omega = \frac{1}{\sqrt{\zeta}}[s_1 \dots s_n]$, where each s_i is a sparse column with exactly ζ random signs ± 1 draw with probability 1/2.

Appendix



< D >

</₽></₽

€

990