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Context & tools

Krylov iterative methods

One of the most time consuming step in a simulation : solving of a large
and sparse eigenvalue problem:

Ax = λx ,
A ∈ Rn×n, x ∈ Rn, λ ∈ C, n ∈ N large, say n ≈ 106

Tool : Krylov subspace methods. These are iterative methods that benefit
from system sparsity by using matrix-vector products. They build upon a
starting vector v1 usually taken at random and the ill-conditioned subspace

Kk(A, v1) ≡ span{v1,Av1, . . . ,Ak−1v1} (1)
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Context & tools

Krylov iterative methods
Tool : Krylov subspace methods. These are iterative methods that benefit
from system sparsity by using matrix-vector products. They build upon a
starting vector v1 usually taken at random and the ill-conditioned subspace

Kk(A, v1) ≡ span{v1,Av1, . . . ,Ak−1v1}

They rely on orthonormalization process, most famous orthonormalization
process : Gram-Schmidt process. Costs O(nk2) where k is the number of
iterations.
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Context & tools

The Arnoldi factorization

When Gram-Schmidt is applied to the set {v1,Av1, . . . ,Ak−1v1}, this gives
the Arnoldi factorization:

Definition (Arnoldi factorization)

AV = VHk + rkeT
k (2)

with orthogonal V ∈ Rn×k and upper Hessenberg Hk ∈ Rk×k .

A V = V

Hk

+rkeT
k
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Context & tools

Restarting an Arnoldi factorization

Extract eigenpairs using Rayleigh-Ritz procedure: If AV = VHk + rkeT
k ,

then

Compute exact pairs Hky = λ̃y (3)
Obtain Ritz pairs Aũ = λ̃ũ + rkeT

k y (4)

with ũ = Vy giving Aũ − λ̃ũ ⊥ Kk (Galerkin condition). (λ̃, ũ) is a Ritz
pair.

Issues : Cost of O(nk2) for the orthogonalization process when k increases
up to k ≈ 102 − 103. Storage of k vectors of size n for V .

Solution : one can restart the Arnoldi factorization. Fix a dimension k,
compute new v+

1 from the current factorization. How to compute a
relevant v+

1 ?
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k y (4)
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Context & tools

Implicitly Restarted Arnoldi method

Idea from Sorensen in [Sor92]: apply polynomial filtering

v+
1 = ψp(A)v1 (5)

Discard unwanted directions with ψp(A) =
∏p

i=1(A− λ̃i I).

Apply the shifted-QR algorithm to Hk+p:

(Hk+p − λ̃i I) = QR then H+
k+p = QT Hk+pQ (6)

Brings v+
1 closer to the span of a partial Schur factorization of A

AZ = ZT , orthogonal Z ∈ Rn×k (7)

Given AV = VHk + rkeT
k , it holds [Sor92, Theorem 2.8]:

rk = 0 ⇐⇒ v1 = Zy (8)
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Context & tools

Scheme of IRA

From a length k: AV = VHk + rkeT
k , extend:

A V = V

Hk+p

+reT
k+p

Apply p shifted QR steps to obtain
H+

k+p = QR = QT Hk+pQ

A V
Q

= V
Q QT

Hk+p
Q

+reT
k+pQ

eT
k+pQ = [0 . . . 0 ηk . . . ηk+p]: equate first k columns to continue with

A(VQ)[e1, . . . , ek ] = (VQ)[e1, . . . , ek ]H̃k + r̃keT
k .
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Context & tools

Sketching

IRA requires a sequence of contractation and expansion steps. Expansion
is expensive due to orthogonalization.

We turn to sketching:

Definition (ε-embedding from [Woo14])
We say that Ω ∈ Rd×n is an ε-embedding for some k-dimensional
subspace Kk ⊂ Rn if

∀ x , y ∈ Kk , |〈Ωx ,Ωy〉 − 〈x , y〉| ≤ ε‖x‖ ‖y‖ . (9)

i.e. ∀ x ∈ Kk , (1− ε)‖x‖ 2 ≤ ‖Ωx‖ 2 ≤ (1 + ε)‖x‖ 2. (10)

Usually d = k
ε2 ≈ 4k s.t. k 5 d << n : computational cost gained.
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randomized IRA

Orthogonalization process

From INPUT W ∈ Rn×k , general algorithm to OUTPUT Q ∈ Rn×k

Ω-orthonormal: (ΩQ)T (ΩQ) = Ik , span{Q} = span{W } and S = ΩQ:

1: for j = 1, . . . , k do
2: Initialize qj = W (:, j) ∈ Rn

3: Sketch sj = Ωqj ∈ Rd

4: Solve with a given method Rj = arg miny∈Rj−1 ‖Sj−1y − sj‖ ∈ Rj−1

5: Update qj = qj − Qj−1Rj
6: Re-sketch sj = Ωqj
7: Store qj/‖sj‖ and sj/‖sj‖
8: end for
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randomized IRA

Orthogonalization process

Solve with a given method

Rj = arg min
y∈Rj−1

‖Sj−1y − sj‖ ∈ Rj−1

Case 1 : Rj = Sj−1 \ sj . RGS from [BG22].

Case 2 : We propose Rj = ST
j−1sj . Called rCGS.

Often requires reorthogonalization:

Rj = ST
j−1sj → qj = qj − VjRj → sj = Ωqj 2 times (11)

Can be accelerated as noted in [BG22]:

Rj = ST
j−1sj → sj = sj − Sj−1Rj 2 times (12)

A mix of the two to stabilize it is possible. Called rCGS2.
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randomized IRA

Orthogonalization process

(a) κ(Q) for Q ∈ Rn×(# of iteration) (b)
∥∥I − ST S

∥∥ over the iterations

W ∈ R105×300 numerically singular. rCGS2 costlier but more stable.
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randomized IRA

randomized Arnoldi

RGS or variant applied to {v1,Av1, . . . ,Ak−1v1} gives

Definition (randomized Arnoldi factorization)

AV = VHk + rkeT
k (13)

with V ∈ Rn×k Ω-orthogonal: (ΩV )T (ΩV ) = Ik and κ(V ) ≤
√

1+ε√
1−ε =

√
3

Theorem (Jean-Guillaume de Damas, Laura Grigori)
If Hk is unreduced in (13), then rk = 0 if and only if v1 = Zy, where
AZ = ZT is a k partial Ω-orthonormal Schur factorization of A with
Z ∈ Rn×k and for some y ∈ Rk .
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randomized IRA

rIRA

1: k steps randomized Arnoldi: AV = VHk + rkeT
k , S = (ΩV ) ∈ Rd×k

2: while convergence not declared do
3: Extend AV = VHk+p + rk+peT

k+p, S = (ΩV ) ∈ Rd×(k+p)

4: Compute eigenvalues (λ̃1, . . . , λ̃k+p) of Hk+p. Monitor residual
norms on wanted pairs and define p shifts from unwanted.

5: Get H+
k+p = QT Hk+pQ from p QR shifted steps

6: Set Ṽ = VQ and S̃ = SQ
7: Set r̃k = αṼ (:, k + 1) + βrk+p
8: Set s̃k = αS̃(:, k + 1) + βsk+p
9: Truncate H̃k = H+

k+p(1 : k, 1 : k), Ṽ = Ṽ (:, 1 : k) and
S̃ = S̃(:, 1 : k)

10: Continue with factorization AṼ = Ṽ H̃k + r̃keT
k , S̃ = (ΩṼ ) ∈ Rd×k .

11: end while
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randomized IRA

Sketching matrix
We take Ω as a Sparse Sign matrix of parameter ζ = 8:

Ω = 1√
ζ

[s1 . . . sn], (14)

where each si is a sparse column with exactly ζ random signs ±1 draw
with probability 1/2. Experiments from Ethan Epperly’s blog:

(a) From ”Which sketch should I use ?”
n = 106, d = 400, k = 200
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randomized IRA

κ(V ) for various orthogonalization and Ritz values

A ∈ R33,833×33,833 named poli4, k = 100 and k + p = m = 200.

(a) κ(V ) over inner iterations

(b) Eigenvalues using rCGS2

Eigenvalues obtained in 2 outer iterations.
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randomized IRA

A ∈ R800×800 with ΛA = {1, 2, 3, . . . , 800}

(a) Residual norms ‖Aũi − λ̃i ũi‖ (b) Ritz values

Figure: rIRA to compute k = 10 Ritz pairs of smallest modulus (SM) for the
non-symmetric 800× 800 toy matrix A with spectrum ΛA = {1, 2, 3, . . . , 800} and
k + p = 50
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randomized IRA

A ∈ R800×800 with ΛA = {1, 2, 3, . . . , 800}

(a) k = 10, k + p = 50 (b) k = 14, k + p = 50
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randomized IRA

Hamrle3: Circuit Simulation, n = 1.4× 106, k = 200 LM, m = 500.

Vas stokes 1M: Semiconductor Process, n = 106, k = 50 SM, m = 100.
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randomized IRA

Comparison eigs / RGS-rIRA. Tolerance η = 10−10

k m Which Nit Time (s)

tmt unsym (Electromagnetic Problem) of size n = 9× 105 with 4.5× 106 nonzeros.

20 200 LM 98 / 102 1417 / 1296

20 200 SM 74 / 69 1149 / 1054

Vas stokes 1M (Semiconductor Process Problem) of size n = 1.1× 106 with 3.5× 107 nonzeros.

50 200 LM 7 / 7 175 / 161

50 200 SM 336 / 575 7727 / 12860

atmosmodl (Computational Fluid Dynamics) of size n = 1.5× 106 with 1.0× 107 nonzeros.

50 200 LM 30 / 32 725 / 638

50 200 SM 32 / 34 740 / 687

ML Geer (Strucural Problem) of size n = 1.5× 106 with 1.1× 108 nonzeros.

50 200 LM 3 / 3 142 / 134

50 200 SM maxit (1000) no convergence
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randomized IRA

Randomized Arnoldi analysis

Theorem (Optimal property)

Suppose AV = VHk + rkeT
k is a randomized Arnoldi factorization. Then

Hk is the representation in Rk with respect to the basis V of the
randomized projection PΩ

Kk
APΩ
Kk

restricted to Kk , that is

PΩ
Kk APΩ

Kk x = VHky when x = Vy . (15)

Moreover, its characteristic polynomial p̂k minimizes ‖Ωp(A)v1‖ over the
set PMk of all monic polynomial p of degree k, i.e.

p̂k = arg min
p∈PMk

‖Ωp(A)v1‖ (16)
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randomized IRA

Randomized Arnoldi analysis

Theorem (Residual as a function of v1)

Let AVj = VjHj + rjeT
j be a sequence of j successive inner randomized

Arnoldi steps with 1 ≤ j ≤ k such that Vj ∈ Rn×j , Hj ∈ Rj×j , Hk is
unreduced and Ω is an ε-embedding for span{Vk , rk}. Note by p̂j the
characteristic polynomial of Hj . Then:

rj = p̂j(A)v1
‖Ωp̂j−1(A)v1‖

. (17)

Theorem (Randomized Implicit Q theorem)
A randomized Arnoldi AV = VHk + rkeT

k is uniquely defined by v1.
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randomized IRA

rIRA analysis

Theorem (Restarting subspace)
rIRA does not add error when restarting from Ritz vectors ũ1, . . . , ũk :

span{VQ[e1, . . . , ek ]} = span{ũ1, . . . , ũk} (18)

Theorem (Fixed shifts convergence)

Let πi the product of the subdiagonal elements of H(i)
k . Then there exists

a constant K and a positive integer I such that for i > I:

0 ≤ πi ≤
√

1 + ε

1− εγ
i K . (19)
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span{VQ[e1, . . . , ek ]} = span{ũ1, . . . , ũk} (18)
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randomized IRA

Summary

Explored randomization for the Arnoldi process, proposed rCGS2
Derived a restarting algorithm rIRA using randomized Arnoldi
Maintained precision, obtained speedup

Thank you for your attention.
Reach me at jean-guillaume.de-damas@inria.fr!
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randomized IRA

Appendix

W is defined as

Wi ,j = sin(10(µj + xi ))
cos(100(µj − x − i)) + 1.1 (20)

where xi and µj range 0 to 1 with equally distanced points, given
n = 105 and k = 300.
Comparison eigs / rIRA done on a node with 2x Cascade Lake Intel
Xeon 5218 16 cores, 2.4GHz processor and 192GB of RAM.
Sparse Sign matrix of parameter ζ = 8: Ω = 1√

ζ
[s1 . . . sn], where

each si is a sparse column with exactly ζ random signs ±1 draw with
probability 1/2.
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