Comparison of multigrid and machine learning-based Poisson solvers

Hadrien Godé¹, Carola Kruse¹, Richard Angersbach², Harald Köstler², Michaël Bauerheim³, Ulrich Rüde^{1,2}

Friedrich-Alexander-Universität 3 S a C Erlangen-Nürnberg

Motivation

Motivation

What is the best solver for Poisson's equation ?

- Multigrid, conjugate gradient, Fourier, neural network... Response vary, but:
 - Historically: Multigrid method
 - Trend: Machine learning based methods (UNet)

Problem: unawareness/ legacy code

Plan

- **1.** Multigrid presentation
- 2. Unet presentation
- **3.** Similarity & discrepancy
- **4.** Direct comparison
- 5. Conclusion advantages and drawbacks

Multigrid presentation

Multigrid presentation: stencils representation

• With the finite difference method : $\nabla^2 \phi = f$ in 2D becomes:

Multigrid presentation : stencils representation

$$\frac{1}{h^2} \begin{pmatrix} -1 & \\ -1 & 4 & -1 \\ & -1 & \end{pmatrix} \phi_{i,j} = f_{i,j}$$

● 5 point stencils → Solving Ax=B

Multigrid presentation : Main idea

$$Ax = f$$
$$Ax - f = r$$

Let u be the ground truth and v our guess:

e = u - vAe = r

Let assume there exists B an approximation of A, where $B^{-1}r$ is easy to compute and is used to obtain the next guess, then:

$$\widetilde{e} = B^{-1}r$$
$$e_{k+1} = u - (v_k + \widetilde{e_k}) = e_k - \widetilde{e_k}$$

Multigrid presentation : The algorithm

First guess « v »: e = 0, example here: Jacobi (repeat v times):

$$v_{i,j} \leftarrow \frac{1}{4} (v_{i,j-1} + v_{i,j+1} + v_{i-1,j} + v_{i+1,j} + h^2 r_{i,j})$$

-> Slow convergence, notably for the smooth component of error

-> Solution compute an approximation on a coarser grid

Multigrid presentation : The algorithm

• Restriction to coarser grid (full weighting):

$$\underbrace{I_{h}^{2h}A_{h}I_{2h}^{h}}_{A_{2h}}e_{2h} = \underbrace{I_{h}^{2h}(f_{h} - A_{h}v_{h})}_{r_{2h}}$$

• Correct the approximation on finer grid (bilinear interpolation):

$$v_h = v_h + I_{2h}^h v_{2h}$$

Multigrid presentation : The algorithm

- **1.** Relaxation (Ae=r with initial guess e=0)
- 2. Restrict (interpolate) the residual to a coarser grid
- 3. If coarsest grid : (cheap computation) solve Ax=B
- 4. Else: recursively restart this algo at coarser grid
- 5. Prolongate/ correct to fine grid approximation
- Relaxation (Ae=r with initial guess from coarsest grid)

∑CERFACS 11

Multigrid presentation : operation count

- Operation count per pixel:
 - Jacobi smoother: $v_j \leftarrow \frac{1}{4}(v_{i,j-1} + v_{i,j+1} + v_{i-1,j} + v_{i+1,j} + h^2 f_i)$ \rightarrow 5 additions and 1 multiplication
 - Compute and transfer the residual to coarser grid $\underbrace{I_{h}^{2h}A_{h}I_{2h}^{h}}_{A_{2h}}e_{2h} = \underbrace{I_{h}^{2h}(f_{h} A_{h}v_{h})}_{r_{2h}} \longrightarrow 25/4$ additions and 5/4 multiplication
 - Interpolate the correction to finer and addition to the previous approximation $v_h = v_h + I_{2h}^h v_{2h}$ \rightarrow 7/4 additions and 3/4 multiplication
 - Coarse grid solver
 → depends, we have counted approximately 42 operations per pixel on
 our tests

Multigrid presentation : operation count

- At each level (except coarsest) operation count = 16 operations per grid point
- At coarsest: approx. 42 operations per grid point
- For a V cycle of depth 4 with 101x101 grid points:
 - Finest level: $10201 \times 16 = 163216$
 - Level 2: $2500 \times 16 = 40000$
 - Level 2: $625 \times 16 = 10000$
 - Coarsest grid: $144 \times 42 = 6048$
- Total number of operations: 219 624
- Total number of operations per grid points: 22

Multigrid presentation : operation count

- The V-Cycle is repeated until residual < threshold</p>
- In our test for threshold = 1e-3 → 4 iterations

Total number of operations per grid points: 88

UNet presentation

UNet presentation: Main idea

Laplacian operator can be nondimensionalized:

$$\nabla_{\Delta}^2 = \frac{1}{\Delta^2} \left(\frac{\partial^2}{\partial \bar{x}^2} + \frac{\partial^2}{\partial \bar{y}^2} \right)$$

• If training done at resolution Δ_{NN} and prediction is wanted a resolution Δ_{sim} :

$$\nabla_{sim}^2 = \frac{\Delta_{sim}^2}{\Delta_{NN}^2} \nabla_{NN}^2$$

UNet presentation: Main idea

- Multiple tunable neurons that can learn complex functions
- non-convex optimization procedure is performed to update the neuron weights by minimizing a cost function (the loss function)
- Neural networks are denoted by *f* such that:

 $\phi_{out} = f(R_{in})$

UNet presentation: the algorithm

- Input: Right hand side (size $1, n_x, n_y$)
- Convolution to matrix of size $(n_{feature}, n_x 2, n_y 2)$

ReLu (replace value by 0 if negative or keep value)

UNet presentation: the algorithm

• Maxpooling:

• Upsampling: nearest neighbour

UNet presentation: the algorithm

UNet presentation: operation count

- Convolution: $Kernel_{size}^2 \times input_{feature} \times output_{features} \times n_x \times n_y$ Operations
- ReLu: $n_x \times n_y$ operations
- Maxpool: $3 \times n_{x_{output}} \times n_{y_{output}}$
- Upsample: $output_{features} \times n_{x_{output}} \times n_{y_{output}}$

UNet presentation: operation count

Level Level FLOP count	
Level (170 795 343 FLOP	
Level 1 27 030 500 FLOP	Total:
Level 2 11 971 250 FLOP	201 222 271 FLOP,
	Or:
	19 726 FLOP per pixel.
Level 3 2613716 FLOP	
Level 4 782712 FLOP	

Similarity & discrepancy

Similarity & discrepancy: architecture comparison

Similarity & discrepancy: equivalence

- Restriction / Maxpooling
- Prolongation / Upsampling
- Convolution / Smoother

Similarity & discrepancy: difference

- Work on residual / work directly on data
- 2D matrix / Creation of a third axis for features
- Direct solver on coarsest / No direct solver on coarsest
- Iterative / Not iterative

Similarity & discrepancy: application

- Don't use skip connection & ReLu
- Replace Maxpooling by average pooling
- Replace Upsampling by linear interpolation
- Use stencil as convolution kernel & slightly rewrite convolution step -> becomes a Jacobi smoother
- Use direct solver at deepest
- Work on residual rather than Right hand side
- = We can define a MG V-cycle with pytorch

	<pre>def restrict_pytorch(u): u = F.avg_pool2d(u, 2) u[:, :, :, 0] = 0 u[:, :, :, -1] = 0 u[:, :, 0, :] = 0 u[:, :, -1, :] = 0 return u</pre>
i	<pre>def prolongate_pytorch(u): u = F.interpolate(u, scale_factor=2, mode='bilinear', align_corners=True) u[:, :, :, 0] = 0 u[:, :, -1] = 0 u[:, :, 0, :] = 0 u[:, :, -1, :] = 0 return u</pre>
)	<pre>def weighted_jacobi_smoother_pytorch(u, f, stencil, omega, iterations): h = 1 / np.shape(u)[-1] stencil = (1 / h**2) * stencil central_coeff = stencil[0, 0, 1, 1] for _ in range(iterations): u_conv = F.conv2d(u, stencil, padding=0) u_conv = F.pad(u_conv, (1, 1, 1, 1), "constant", 0) u = u + omega * (f - u_conv) / central_coeff u[:, :, :, 0] = 0 u[:, :, :, 0, :] = 0 u[:, :, -1, :] = 0 return u</pre>

Direct comparison

Direct comparison: the test

 $abla^2 u = -2\pi^2 \sin(\pi x) \sin(\pi y)$ on Ω u = 0 on $\delta \Omega$ (exact solution: $u = -\sin(\pi x) \sin(\pi y)$) Residual threshold: 10^{-3} (UNet limit)

- Computer resource:
 - config_1: Bi-socket Intel node with 2 x 18-core Xeon Gold 6140 CPUs (2.3 GHz, 96 GB memory), interacting with 4 NVIDIA V100 32 GB GPUs (only one used in this study).
 - config_2: Bi-socket AMD node with 2 x 64-core EPYC Rome 7702 CPUs (2 GHz, 512 GB memory), interacting with a single NVIDIA A100 40 GB GPU.

Direct comparison: mean execution time results

Direct comparison: accuracy results

Z X

Exact solution

Multigrid result

Direct comparison: accuracy results

Exact solution

UNet result

Direct comparison: accuracy results

Multigrid error abs(U-Exact)

UNet error abs(U-Exact)

7 X

Direct comparison: discussion

• For Poisson's equation:

- Multigrid faster
- Less operation per grid points
- Less IO operations
- Controlable precision
- Multigrid more accurate
- Using multigrid to solve Poisson's equation is best !

Conclusion: advantages and drawbacks

Conclusion: advantages and drawbacks

Multigrid	Unet
+ Parallelizable	+Highly parallelizable
+ Linear scaling with the number of mesh nodes	+Linear scaling with the number of mesh nodes
+ Controllable precision (scale with –log10(residual))	+Well studied & developed
+Fast(est) on continuous isotropic problem	+ Applicable to a discontinuous problem
O Need complementary features for finite element method	+ Applicable to a anisotropic problem
O variety of architecture	O variety of architecture
- Less efficient on discontinuous problems	- Need for datasets & training
- Less efficient on anisotropic problems	- Limited precision

