
| 1

Comparison of multigrid and
machine learning-based

Poisson solvers
Hadrien Godé1, Carola Kruse1, Richard Angersbach2, Harald Köstler2,

Michaël Bauerheim3, Ulrich Rüde1,2

1 2 3

| 2

Motivation

Poisson’s equation: ∇2𝜙 = 𝑓

∇2𝜙 = −
𝜌𝑓

𝜖

Electrostatic: elictric field potential
linked to charge density function (𝜌𝑓)

and permittivity (ϵ)
Fluid dynamics: pressure field linked to
density (𝜌) and velocity (𝑈)

∇2𝑃 = −𝜌∇. (𝑈. ∇𝑈)

Plasma, material science, biophysics…

| 3

Motivation

What is the best solver for Poisson’s equation ?

• Multigrid, conjugate gradient, Fourier, neural network… Response vary, but:

• Historically: Multigrid method

• Trend: Machine learning based methods (UNet)

• Problem: unawareness/ legacy code

| 4

Plan

1. Multigrid presentation

2. Unet presentation

3. Similarity & discrepancy

4. Direct comparison

5. Conclusion advantages and drawbacks

| 5

Multigrid presentation

| 6

Multigrid presentation: stencils representation

• With the finite difference method : ∇2𝜙 = 𝑓 in 2D becomes:

−𝜙𝑖−1,𝑗 + 2𝜙𝑖,𝑗 − 𝜙𝑖+1,𝑗

ℎ𝑥
2 +

−𝜙𝑖,𝑗−1 + 2𝜙𝑖,𝑗 − 𝜙𝑖,𝑗+1

ℎ𝑦
2 = 𝑓𝑖,𝑗

1

ℎ2
𝜙𝑖,𝑗 = 𝑓𝑖,𝑗

| 7

Multigrid presentation : stencils representation

1

ℎ2

−1
−1 4 −1

−1
𝜙𝑖,𝑗 = 𝑓𝑖,𝑗

• 5 point stencils ➡️ Solving Ax=B

| 8

Multigrid presentation : Main idea

𝐴𝑥 = 𝑓

𝐴𝑥 − 𝑓 = 𝑟

Let 𝑢 be the ground truth and 𝑣 our guess:

𝑒 = 𝑢 − 𝑣

𝐴𝑒 = 𝑟

Let assume there exists 𝐵 an approximation of 𝐴, where 𝐵−1𝑟 is easy to compute
and is used to obtain the next guess, then:

ǁ𝑒 = 𝐵−1𝑟

𝑒𝑘+1 = 𝑢 − 𝑣𝑘 +෦𝑒𝑘 = 𝑒𝑘 −෦𝑒𝑘

| 9

Multigrid presentation : The algorithm

First guess « 𝑣 »: 𝑒 = 0, example here: Jacobi (repeat 𝜈 times):

𝑣𝑖,𝑗 ←
1

4
(𝑣𝑖,𝑗−1 + 𝑣𝑖,𝑗+1 + 𝑣𝑖−1,𝑗 + 𝑣𝑖+1,𝑗 + ℎ2𝑟𝑖,𝑗)

-> Slow convergence, notably for the smooth component of error

-> Solution compute an approximation on a coarser grid

| 10

Multigrid presentation : The algorithm

• Restriction to coarser grid (full weighting):

𝐼ℎ
2ℎ𝐴ℎ𝐼2ℎ

ℎ

𝐴2ℎ

𝑒2ℎ = 𝐼ℎ
2ℎ(𝑓ℎ − 𝐴ℎ𝑣ℎ)

𝑟2ℎ

• Correct the approximation on finer grid (bilinear interpolation):

𝑣ℎ = 𝑣ℎ + 𝐼2ℎ
ℎ 𝑣2ℎ

| 11

Multigrid presentation : The algorithm

1. Relaxation (Ae=r with initial guess e=0)

2. Restrict (interpolate) the residual to a
coarser grid

3. If coarsest grid : (cheap computation)
solve Ax=B

4. Else: recursively restart this algo at
coarser grid

5. Prolongate/ correct to fine grid
approximation

6. Relaxation (Ae=r with initial guess from
coarsest grid)

| 12

Multigrid presentation : operation count

• Operation count per pixel:

• Jacobi smoother: 𝑣𝑗 ←
1

4
(𝑣𝑖,𝑗−1 + 𝑣𝑖,𝑗+1 + 𝑣𝑖−1,𝑗 + 𝑣𝑖+1,𝑗 + ℎ2𝑓𝑖) ➡️ 5 additions and 1

multiplication

• Compute and transfer the residual to coarser grid 𝐼ℎ
2ℎ𝐴ℎ𝐼2ℎ

ℎ

𝐴2ℎ

𝑒2ℎ = 𝐼ℎ
2ℎ(𝑓ℎ − 𝐴ℎ𝑣ℎ)

𝑟2ℎ

➡️ 25/4

additions and 5/4 multiplication

• Interpolate the correction to finer and addition to the previous approximation 𝑣ℎ = 𝑣ℎ +

𝐼2ℎ
ℎ 𝑣2ℎ ➡️ 7/4 additions and 3/4 multiplication

• Coarse grid solver ➡️ depends, we have counted approximately 42 operations per pixel on
our tests

| 13

Multigrid presentation : operation count

• At each level (except coarsest) operation count = 16 operations per grid point

• At coarsest: approx. 42 operations per grid point

• For a V cycle of depth 4 with 101x101 grid points:

• Finest level: 10201 × 16 = 163216

• Level 2: 2500 × 16 = 40000

• Level 2: 625 × 16 = 10000

• Coarsest grid: 144 × 42 = 6048

• Total number of operations: 219 624

• Total number of operations per grid points: 22

| 14

Multigrid presentation : operation count

• The V-Cycle is repeated until residual < threshold

• In our test for threshold = 1e-3 ➡️4 iterations

Total number of operations per grid points: 88

| 15

UNet presentation

| 16

UNet presentation: Main idea

• Laplacian operator can be nondimensionalized:

∇Δ
2=

1

Δ2
𝜕2

𝜕 ҧ𝑥2
+

𝜕2

𝜕ത𝑦2

• If training done at resolution Δ𝑁𝑁 and prediction is wanted a resolution Δ𝑠𝑖𝑚:

∇𝑠𝑖𝑚
2 =

Δ𝑠𝑖𝑚
2

Δ𝑁𝑁
2 ∇𝑁𝑁

2

| 17

UNet presentation: Main idea

• Multiple tunable neurons that can learn complex functions

• non-convex optimization procedure is performed to update the neuron weights
by minimizing a cost function (the loss function)

• Neural networks are denoted by 𝑓 such that:

𝜙𝑜𝑢𝑡 = 𝑓(𝑅𝑖𝑛)

| 18

UNet presentation: the algorithm

• Input: Right hand side (size 1, 𝑛𝑥, 𝑛𝑦)

• Convolution to matrix of size (𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒 , 𝑛𝑥 − 2, 𝑛𝑦 − 2)

• ReLu (replace value by 0 if negative or keep value)

| 19

UNet presentation: the algorithm

• Maxpooling:

• Upsampling: nearest neighbour

Nearest neighbour

| 20

UNet presentation: the algorithm

| 21

UNet presentation: operation count

• Convolution: 𝐾𝑒𝑟𝑛𝑒𝑙𝑠𝑖𝑧𝑒
2 × 𝑖𝑛𝑝𝑢𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒 × 𝑜𝑢𝑡𝑝𝑢𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛𝑥 × 𝑛𝑦

Operations

• ReLu: 𝑛𝑥 × 𝑛𝑦 operations

• Maxpool: 3 × 𝑛𝑥𝑜𝑢𝑡𝑝𝑢𝑡 × 𝑛𝑦𝑜𝑢𝑡𝑝𝑢𝑡

• Upsample: 𝑜𝑢𝑡𝑝𝑢𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛𝑥𝑜𝑢𝑡𝑝𝑢𝑡× 𝑛𝑦𝑜𝑢𝑡𝑝𝑢𝑡

| 22

UNet presentation: operation count

Total:

201 222 271 FLOP,

Or:

19 726 FLOP per pixel.

| 23

Similarity & discrepancy

| 24

Similarity & discrepancy: architecture
comparison

| 25

Similarity & discrepancy: equivalence

• Restriction / Maxpooling

• Prolongation / Upsampling

• Convolution / Smoother

| 26

Similarity & discrepancy: difference

• Work on residual / work directly on data

• 2D matrix / Creation of a third axis for features

• Direct solver on coarsest / No direct solver on coarsest

• Iterative / Not iterative

| 27

Similarity & discrepancy: application

• Don’t use skip connection & ReLu

• Replace Maxpooling by average pooling

• Replace Upsampling by linear interpolation

• Use stencil as convolution kernel & slightly
rewrite convolution step -> becomes a Jacobi
smoother

• Use direct solver at deepest

• Work on residual rather than Right hand side

= We can define a MG V-cycle with pytorch

| 28

Direct comparison

| 29

Direct comparison: the test

• Test:

∇2𝑢 = −2𝜋2 sin 𝜋𝑥 sin 𝜋𝑦 on Ω

𝑢 = 0 on 𝛿Ω

(exact solution: 𝑢 = −sin 𝜋𝑥 sin 𝜋𝑦)

Residual threshold: 10−3(UNet limit)

• Computer resource:

• config_1: Bi-socket Intel node with 2 x 18-core Xeon Gold 6140 CPUs (2.3 GHz, 96 GB
memory), interacting with 4 NVIDIA V100 32 GB GPUs (only one used in this study).

• – config_2: Bi-socket AMD node with 2 x 64-core EPYC Rome 7702 CPUs (2 GHz, 512

GB memory), interacting with a single NVIDIA A100 40 GB GPU.

| 30

Direct comparison: mean execution time results

🔵Multigrid V-Cycle results 🔴 UNet results

| 31

Direct comparison: accuracy results

Exact solution Multigrid result

| 32

Direct comparison: accuracy results

Exact solution UNet result

| 33

Direct comparison: accuracy results

Multigrid error abs(U-Exact) UNet error abs(U-Exact)
Mean error: 2.00 × 10−5 Mean error: 1.63 × 10−2

| 34

Direct comparison: discussion

• For Poisson’s equation:

• Multigrid faster

• Less operation per grid points

• Less IO operations

• Controlable precision

• Multigrid more accurate

• Using multigrid to solve Poisson’s equation is best !

| 35

Conclusion: advantages and
drawbacks

| 36

Conclusion: advantages and drawbacks

Multigrid Unet

+ Parallelizable +Highly parallelizable

+ Linear scaling with the number of mesh nodes +Linear scaling with the number of mesh nodes

+ Controllable precision (scale with –log10(residual)) +Well studied & developed

+Fast(est) on continuous isotropic problem + Applicable to a discontinuous problem

O Need complementary features for finite element
method

+ Applicable to a anisotropic problem

O variety of architecture O variety of architecture

- Less efficient on discontinuous problems - Need for datasets & training

- Less efficient on anisotropic problems - Limited precision

