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Introduction: low precision

Motivation to use low precision

Unsurprising motivation: using low precision to achieve
higher speed in lower (work)space
Traditionally: single precision (fp32) and double precision (fp64)
Throughout 1990’s, single was not much faster than double.
Breakthrough in SSE units (Intel, 1999): single precision significantly
accelerated
Emergence of half precision (fp16) floating-point arithmetic: 2008
revision of the IEEE standard.
Started as storage format, but soon in GPU accelerators. See
discussions in Higham, 2017; Higham, Mary, 2022.
BUT: fp16: limited range (largest positive number is 6.55 × 104); a
variant: bfloat16 used by Google in its tensor processing units (larger
range, less significant decimal digits)
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Introduction: low precision

Table: Parameters for bfloat16, fp16, fp32, and fp64 arithmetic: the number of
bits in the significand and exponent, unit roundoff u, smallest positive
(subnormal) number xs

min , smallest normalized positive number xmin, and
largest finite number xmax, all given to three significant figures. † In Intel’s
bfloat16 specification, subnormal numbers are not supported.

Signif. Exp. u xs
min xmin xmax

fp16 11 5 4.88 × 10−4 5.96 × 10−8 6.10 × 10−5 6.55 × 104

fp32 24 8 5.96 × 10−8 1.40 × 10−45 1.18 × 10−38 3.40 × 1038

fp64 53 11 1.11 × 10−16 4.94 × 10−324 2.22 × 10−308 1.80 × 10308

bfloat16 8 8 3.91 × 10−3 † 1.18 × 10−38 3.39 × 1038
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Low precision and our data

Solving ill-conditioned linear systems by preconditioned iterative methods
in fp16

Ax = b

A ∈ Rn×n is large, sparse and symmetric positive definite,

Problem 1: using input data
Low precison means: matrix values have to be initially mapped to the
set of values existing in fp16. (Haidar et al., 2017; Higham, Pranesh,
Zounon, 2019; Higham, Pranesh, 2021)
Doing this, we may loose (will loose) initially some information.
This problem is demonstrated using our matrix test set (next slide)
Our squeezing into fp16 is based on l2 scaling of columns of the lower
triangular part of A, scaling is a must, nothing more needed (in our
case)
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Low precision and our data

Test examples from SuiteSparse Matrix Collection.

Identifier n nnz(A) nnz(A, fp16) normA cond2(A)
Boeing/msc01050 1050 1.51×104 4.63×103 2.58×107 4.58×1015

HB/bcsstk11 1473 1.79×104 6.73×103 1.21×1010 2.21×108

HB/bcsstk26 1922 1.61×104 6.69×103 1.68×1011 1.66×108

HB/bcsstk24 3562 8.17×104 3.89×104 5.28×1014 1.95×1011

HB/bcsstk16 4884 1.48×105 5.25×104 4.12×1010 4.94×109

Cylshell/s2rmt3m1 5489 1.13×105 5.09×104 9.84×105 2.50×108

Cylshell/s3rmt3m1 5489 1.13×105 5.08×104 1.01×105 2.48×1010

Boeing/bcsstk38 8032 1.82×105 7.83×104 4.50×1011 5.52×1016

Boeing/msc10848 10848 6.20×105 3.02×105 4.58×1013 9.97×109

Oberwolfach/t2dah_e 11445 9.38×104 4.88×104 2.20×10−5 7.23×108

Boeing/ct20stif 52329 1.38×106 6.30×105 8.99×1011 1.18×1012

DNVS/shipsec8 114919 3.38×106 7.71×105 7.31×1012 2.40×1013

Um/2cubes_sphere 101492 8.74×105 4.57×105 3.43×1010 2.59×108

GHS_psdef/hood 220542 5.49×106 2.66×106 2.23×109 5.35×107

Um/offshore 259789 2.25×106 1.17×106 1.44×1015 4.26×109
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Low precision and factorization

Consequently: no direct method, only preconditioner

Problem 2: algebraic preconditioner, IC in our case, and growth

The growth factor (early 60’s, Wilkinson) for A = (aij)1≤i≤n,1≤j≤n:

ρn =
maxi,j,k ∣a

(k)
ij ∣

maxi,j ∣aij ∣
≥ 1

Complete Cholesky factor does not grow (the growth factor ρn is
equal to 1, e.g., Higham, 2002)
But IC may have the growth. Even without fp16
For example: (next slide)
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Low precision and factorization

Problem 2: growth in IC (continued)
Example: incomplete factorization IC(0), well-conditioned matrix A.

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

3 −2 0 2 0
−2 3 −2 0 0
0 −2 3 −2 0
2 0 −2 8 + 2δ 2
0 0 0 2 8

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

L =

⎛
⎜⎜⎜⎜⎜⎜
⎝

d1
−2/d1 d2

0 −2/d2 d3
2/d1 0 −2/d3 d4

0 0 0 2/d4 d5

⎞
⎟⎟⎟⎟⎟⎟
⎠

,

with d2
1 = 3, d2

2 = 5/3, d2
3 = 3/5, d2

4 = 2δ, and d2
5 = 8 − 2/δ.

The problem is incompleteness, not a specific IC choice ...
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Low precision and factorization

Problem 2: growth in IC (continued)
Our matrices and IC(3) (level-based IC):

Detected growth in our experiments. IC(0), fp64.
Identifier n detected growth factor

Boeing/msc01050 1050 9.43×101

HB/bcsstk11 1473 1.98×103

HB/bcsstk24 3562 5.10×102

Boeing/bcsstk38 8032 4.52×1047

Boeing/msc10848 10848 9.59×1016

Boeing/ct20stif 52329 1.14×106

Different for different IC. May be (approximately) put into the
context of the amount of (inexact updates) inside IC, but not always
fp16: typically worse tendency. But in some cases no growth
detected.
This needs to be solved. The values in fp16 must not grow so much!
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Low precision and breakdowns

Problem 3: overflows and breakdowns
Growth means facing dangers of overflows! This is another serious
problem of fp16 in our computations.
Problem of overflows can be solved similarly as the problem of getting
high quality IC without breakdowns.
Nemely, using diagonal shifts introduced to monitori sizes of diagonal
entries

▸ Whenever a diagonal entry is small: A→ A + αI (Manteuffel
(1980), seminal implementation Lin, Moré (1999))

Using diagonal shifts to avoid breakdowns COINCIDES with the effort
to find efficient preconditioners. But in fp16 still the sole monitoring
of diagonal entries cannot prohibit overflows.

Overflows must be treated as specific (potential) breakdowns
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Breakdowns

Problem 3: overflows and breakdowns
Let us distinguish three kinds of potential breakdowns (up to now
without showing an IC algorithm) ©

B1: The computed diagonal entry lkk (termed the pivot at step k)
may be unacceptably small (close to zero or negative).

▸ This could cause a breakdown in a later step of the factorization
▸ Its treatment goes hand in hand with the effort to compute an

efficient preconditioner

B2: The scaling of column entries lik ← lik/lkk may overflow.

B3: The update lij ← lij − likljk may overflow.
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Detecting breakdowns

Problem 3: overflows and breakdowns
Two differentto treat breakdowns (apriori/aposteriori detection):

▸ Detect them safely inside the code

▸ Use IEEE exceptions (if enabled) and test them aposteriori
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Detecting breakdowns

Problem 3: overflows and breakdowns
Safe detections inside the code:
Straighforward to detect directly B1 (small diagonal entries)
B2 (breakdown in scaling) also straightforward: no overflow if

lkk ≥ 1 or lkk ≥ lik/xmax

Otherwise, breakdown B2 detected
B3 breakdown: needed to avoid overflow in any of the partial results
in lij ← lij − likljk

Safe detections can be fast if applied to rows/columns using
maximum magnitudes inside them.
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Detecting breakdowns

Algorithm
Basic IC factorization with safe checks for breakdown
1: Initialize lij = aij for all (i, j) ∈ S{L}
2: Set flag = 0
3: for k = 1 ∶ n do ▷ Start of k-th major step
4: If lkk < τ then Set flag = −1 and return ▷ B1 breakdown
5: lkk ← (lkk)

1/2

6: a =maxi=k+1∶n{∣lik ∣ ∶ (i, k) ∈ S{L}}
7: If lkk ≥ 1 or lkk ≥ a/xmax then ▷ If lkk ≥ 1, a does not need to be computed
8: for i = k + 1 ∶ n such that (i, k) ∈ S{L} do
9: lik ← lik/lkk ▷ Perform safe scaling

10: end for ▷ Column k of L has been computed
11: Else Set flag = −2 and return ▷ B2 breakdown
12: for j = k + 1 ∶ n such that (j, k) ∈ S{L} do
13: Test safe update If not_safe return ▷ B3 breakdown
14: for i = j ∶ n such that (i, j) ∈ S{L} do
15: lij ← lij − likljk ▷ Perform safe update operation
16: end for
17: end for ▷ Column j of L has been updated
18: end for
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Detecting breakdowns

Experimental results uses
▸ Safe detection of breakdowns

▸ Ill-conditioned matrices shown above
(also better-conditioned ones in Scott, T., 2024)

Our work should answer two questions:
▸ Are we able to use fp16 in such environment?
▸ Are we able to achieve high accuracy when using fp16

preconditioner?
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fp16 preconditioning

Experiments
NAG Fortran implementation with the full IEEE fp16 computation
(storage and operations) (internally simulated)

Any detected breakdown solved by the shift

To achieve high accuracy of the solution: GMRES iterative refinement
(IR) that may employ more precisions. (CG results in parentheses.)

IR in full precision vectors. Otherwise, possibility of breakdowns in
substitution steps: scaling not necessarily helps.

A lot of previous work on achieving the high (double precision)
accuracy. See Carson, Higham, 2017; but see also the efforts in Arioli,
Duff, 2009; Buttari, 2008; Buttari, 2007; more citations in Scott, T.,
2024
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fp16 preconditioning

Iterative refinement
Algorithm
Krylov-based iterative refinement with an incomplete factorization preconditioner
using five precisions (IC-Krylov-IR)
Input: SPD matrix A and vector b in precision u, a Krylov subspace method, and five
precisions ur, ug, up, u and uℓ

Output: Computed solution of the system Ax = b in precision u

1: Compute an incomplete Cholesky factorization of A in precision uℓ

2: Initialize x1 = 0
3: for i = 1 : itmax or until converged do
4: Compute ri = b −Axi in precision ur; store ri in precision u
5: Solve Adi = ri using the preconditioned Krylov method in precision ug,

preconditioning and products with A performed in precision up; di stored in
precision u ▷ Computed factors used as the preconditioner

6: Compute xi+1 ← xi + di in precision u
7: end for
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fp16 preconditioning

IC(3) preconditioning in fp16 + iterative refinement

Preconditioner fp16-IC(3)
Identifier resfinal nnz(L) oits tits nmod nofl

Boeing/msc01050 6.47×10−14 3.74×104 3 125 (64) 2 0
HB/bcsstk11 1.89×10−13 4.18×104 3 265 (184) 0 2
HB/bcsstk26 1.51×10−13 3.43×104 3 80 (70) 2 0
HB/bcsstk24 1.77×10−13 2.27×105 3 437 (260) 0 2
HB/bcsstk16 6.64×10−15 4.89×105 3 17 (17) 0 0
Cylshell/s2rmt3m1 4.11×10−15 2.60×105 3 83 (117) 0 0
Cylshell/s3rmt3m1 9.01×10−15 2.60×105 3 386 (504) 1 1
Boeing/bcsstk38 1.43×10−15 5.64×105 4 1004 (282) 2 0
Boeing/msc10848 1.13×10−14 2.51×106 3 138 (89) 0 0
Oberwolfach/t2dah_e 1.88×10−16 3.29×105 3 6 (6) 0 0
Boeing/ct20stif 1.63×10−9 6.70×106 3 > 103 (> 103) 2 0
DNVS/shipsec8 1.26×10−16 1.22×107 4 2067 (1399) 2 0
Um/2cubes_sphere 1.63×10−16 8.70×106 3 6 (6) 0 0
GHS_psdef/hood 5.01×10−17 2.78×107 4 444 (406) 0 4
Um/offshore 1.38×10−13 2.08×107 3 103 (40) 0 4
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fp64 preconditioning

IC(3) preconditioning in fp64 + iterative refinement
Preconditioner fp64-IC(3)

Identifier resfinal nnz(L) oits tits

Boeing/msc01050 5.80×10−14 3.74×104 3 38 (25)
HB/bcsstk11 6.96×10−14 4.18×104 3 29 (29)
HB/bcsstk26 1.68×10−13 3.43×104 3 60 (62)
HB/bcsstk24 1.01×10−13 2.27×105 3 71 (67)
HB/bcsstk16 3.13×10−15 4.89×105 3 15 (14)
Cylshell/s2rmt3m1 8.74×10−15 2.60×105 3 71 (105)
Cylshell/s3rmt3m1 6.12×10−5 2.60×105 1 > 103 (> 103)
Boeing/bcsstk38 8.34×10−14 5.64×105 3 154 115)
Boeing/msc10848 2.26×10−16 2.51×106 3 47 (46)
Oberwolfach/t2dah_e 6.54×10−16 3.29×105 3 5 (5)
Boeing/ct20stif 2.02×10−11 6.70×106 3 > 103 (> 103)
DNVS/shipsec8 1.11×10−16 1.22×107 4 313 (181)
Um/2cubes_sphere 1.63×10−16 8.70×106 3 5 (5)
GHS_psdef/hood ‡ ‡ ‡ ‡ ‡
Um/offshore ‡ ‡ ‡ ‡ ‡
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Implications of the double precision preconditioning

Possibly MORE than just detecting breakdowns needed
What about?: bounding off-diagonals in sparse modified Cholesky.
Motivated by Gill, Murray, 1974; Gill, Murray, Wright, 2019 (2nd
edition); see Fang, O’Leary, 2008.
Not achievable by checking IEEE exceptions
The principle:

lkk =max{lkk, ( lkmax

β
)

2
}, lkmax =max

i>k
{∣lik∣ ∶ (i, k) ∈ S{L}}.

Detected troubles with this GMW(β) treated also as global shifts

Lemma
Let the matrix A be sparse and SPD. Assume that, using the GMW(β) strategy,
columns 1 to j − 1 columns of the IC factor L have been successfully computed in fp16
arithmetic. For i ≥ j let nz(i) denote the number of nonzero entries in Li,1∶j−1. If

∣aij ∣ +min(nz(i), nz(j))β2
≤ xmax for all (i, j) ∈ S{L},

then B3 breakdown cannot occur in the j-th step.
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Experiments with GMW strategies

GMW + IC(3) with look-ahead in fp64 + iterative refinement
Identifier GMW(0.5) GMW(10) GMW(100) IC(3)-LA

its (n2) its (n2) its (n1, n2) its (n1)
Boeing/msc01050 78 (60) 24 (0) 24 (4, 0) 24 (0)
HB/bcsstk11 1087 (476) 201 (0) 201 (0, 0) 232 (0)
HB/bcsstk26 775 (476) 79 (0) 79 (0, 0) 79 (0)
HB/bcsstk24 913 (409) 89 (0) 89 (0, 0) 89 (0)
HB/bcsstk16 41 (26) 22 (0) 22 (0, 0) 22 (0)
Cylshell/s2rmt3m1 792 (585) 146 (0) 146 (0, 0) 146 (0)
Cylshell/s3rmt3m1 2901 (710) 102 (0) 102 (0, 0) 102 (0)
Boeing/bcsstk38 1301 (943) 141 (0) 141 (0, 0) 141 (0)
Boeing/msc10848 790 (600) 68 (0) 68 (0, 0) 68 (0)
Oberwolfach/t2dah_e 14 (6) 6 (0) 6 (0, 0) 6 (0)
Boeing/ct20stif 2122 (4847) 2036 (40) > 1000 (0, 0) 1940 (2)
DNVS/shipsec8 701 (4658) 354 (0) 354 (0, 55) 354 (0)
GHS_psdef/hood 2480 (25054) > 1000 (2013) > 1000 (0, 11998) 568 (5)
Um/offshore > 1000 (4094) > 1000 (6327) ‡(4, 4730) 128 (5)

Apparently a possibility, look-ahead means more tests for B1, n2 are local
modifications
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Experiments with GMW strategies

GMW + IC(3) with look-ahead in fp16 + iterative refinement
Identifier GMW(0.5) GMW(10) GMW(100) IC(3)-LA

its (n1, n2) its (n1, n2) its (n1, n2) its (n1)
Boeing/msc01050 96 (0, 60) 65 (1, 0) 65 (1, 0) 84 (4)
HB/bcsstk11 1092 (0, 476) > 1000 (0, 310) 205∗ (0, 0) 205 (1)
HB/bcsstk26 786 (0, 476) 111 (1, 0) 111 (1, 0) 87 (1)
HB/bcsstk24 1018 (0, 446) > 1000 (0, 428) 428♯ (0, 0) 428 (1)
HB/bcsstk16 41 (0, 26) 23 (0, 0) 23 (0, 0) 23 (0)
Cylshell/s2rmt3m1 787 (0, 584) 155 (0, 0) 155 (0, 0) 155 (0)
Cylshell/s3rmt3m1 2017 (1, 710) 630 (2, 0) 630 (2, 0) 630 (2)
Boeing/bcsstk38 1335 (1, 914) 313 (1, 0) 313♯ (0, 0) 313 (1)
Boeing/msc10848 684 (0, 591) 81 (0, 0) 81 (0, 0) 81 (0)
Oberwolfach/t2dah_e 11 (0, 6) 7 (0, 0) 7 (0, 0) 7 (0)
Boeing/ct20stif 2139 (0, 4827) 1900 (2, 0) 1900 (2, 0) 1900 (2)
DNVS/shipsec8 2569 (1, 1) 2390 (1, 0) 2390 (1, 0) 1492 (1)
GHS_psdef/hood 2459 (0, 25074) 581∗ (0, 0) 581 (5, 0) 581 (5)
Um/offshore > 1000 (0, 3846) > 1000 (0, 5838) 2013 (4, 2) 129 (5)

Also fp16 works well with GMW
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Conclusions

fp16 IC preconditioning possible. All breakdowns including overflows
can be safely detected.
The way to convert them to global shifts is viable.
Extensions to other IC, ILU possible.
Monitoring growth (as done in GMW) can solve related problems, like
breakdowns in fp64.
But note that development of more adaptive preconditioner should be
done hand in hand with the output of reproducible software
Heretic questions (in Cathar coutry): Do we need such (double
precision) accuracy? What do we have to pay for the IR? (Suspicion
is that that the price is not small) ©
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Last but not least

Thank you for your attention!
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