Session 1
Weifeng Liu : Pangulu: A Scalable Regular Two-Dimensional Block-Cyclic Sparse Direct Solver on Distributed Heterogeneous Systems
Samuel Rodriguez: Accelerating Sparse Direct Solvers: Strategies for High Performance on NVIDIA GPUs
Théo Briquet: Learning for Predicting the Rank of Hierarchical Matrices
Sherry Li: Construction of Hierarchically Semi-Separable Matrix Using Faster Randomized Sketching
Nabil Abubaker: Scaling Stratified Stochastic Gradient Descent for Distributed Matrix Completion
Session 2
Barbara Wohlmuth: Large Scale Generation of Matern Type Random Fields
Jérémy Briant: A Filtered Multilevel Monte Carlo Method for the Estimation of Discretized Random Fields
Jean-Guillaume De Damas: Randomized Implicilty Restarted Arnoldi Method for Large and Sparse Non-Symmetric Eigenproblems
Session 3
Petr Vacek: The Effect of Approximate Coarsest-Level Solves on the Convergence of Multigrid V-Cycle Methods
Michael Zikeli: Mixed Precision Multigrid Methods on Hybrid Tetrahedral Grids
Dinesh Parthasarathy: Evolving Algebraic Multigrid Methods using Grammar-Guided Genetic Programming
Hadrien Godé: Comparison of Multigrid and Machine Learning-Based Poisson Solvers
Session 4
Frédéric Nataf: Adaptive Coarse Space for Saddle Point Problem
El-Mehdi Ettaouchi: Nonlinear Schwarz Domain Decomposition Solvers for Two-Phase Flow in Porous Media
Miroslav Tůma: A Half Precision Incomplete Cholesky Factorization Preconditioning
Ieva Daužickaitė: Mixed Precision FGMRES
Murat Manguoglu: A Null-Space Method Based Algebraic Iterative Scheme for Saddle Point Problems